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Predictive Modelling for Football Analytics discusses the most well-
known models and the main computational tools for the football analytics
domain. It further introduces the footBayes R package that accompanies the
reader through all the examples proposed in the book. It aims to be both a
practical guide and a theoretical foundation for students, data scientists,
sports analysts, and football professionals who wish to understand and
apply predictive modelling in a football context.
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Discusses various modelling strategies and predictive tools related to
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package available on CRAN

Walks the reader through the full pipeline: from data collection and
preprocessing, through exploratory analysis and feature engineering, to
advanced modelling techniques and evaluation

Bridges the gap between raw football data and actionable insights
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science willing to learn about the football analytics domain. Although
technical in nature, the book is designed to be accessible to readers with a
background in statistics, programming, or a strong interest in sports
analytics. It is well-suited for use in academic courses on sports analytics,
data science projects, or professional development within football clubs,
agencies, and media organizations.
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To our families
and the football fans in love with statistics.
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Preface

In recent years, football—known globally as the beautiful game—has
undergone a profound transformation shaped by the rise of data and
analytics. What was once the exclusive domain of scouts' intuition and
coaches' experience has been augmented, and in many ways revolutionized,
by the advent of predictive modelling and data-driven decision-making.
Predictive Modelling for Football Analytics emerges at this intersection,
where the love for the game meets the rigour of statistical science.

The impetus for this book stems from a growing demand to bridge the
gap between raw football data and actionable insights. While statistics have
long been used in other sports such as baseball and basketball, the
inherently fluid and low-scoring nature of football has posed unique
challenges for analysts and modellers. Our motivation in writing this book
was to provide a structured approach to tackling these challenges using a
comprehensive suite of predictive tools and methodologies—grounded in
machine learning, statistical inference, and domain-specific knowledge.

This book aims to be both a practical guide and a theoretical foundation
for students, data scientists, sports analysts, and football professionals who
wish to understand and apply predictive modelling in a football context. It
walks the reader through the full pipeline: from data collection and
preprocessing, through exploratory analysis and feature engineering, to
advanced modelling techniques and evaluation. Emphasis is placed on
reproducibility, interpretability, and real-world application, with each



chapter grounded in examples and datasets reflective of contemporary
football.

Although technical in nature, the book is designed to be accessible to
readers with a background in statistics, programming, or a strong interest in
sports analytics. It is well-suited for use in academic courses on sports
analytics, data science projects, or professional development within football
clubs, agencies, and media organizations.

A work of this nature is never a solitary effort. We would like to express
our gratitude to the many individuals and institutions that supported us
throughout this journey. Special thanks go to our colleague, professor
Nicola Torelli, and to some researchers and practitioners in the football
analytics community, Roberto Macrì Demartino and Vasilis Palaskas,
whose insights, footBayes R package development, and critical discussions
have shaped much of the field—and this book.

We also extend our appreciation to friends and mentors who provided
feedback during the writing process, and to our families for their patience
and encouragement.

It is our hope that this book not only informs but inspires further
exploration and innovation in football analytics. Whether you are building
models for match outcomes, scouting promising talent, or optimizing team
performance, may this work serve as a valuable resource in your pursuit of
insight.

Leonardo Egidi, Ioannis Ntzoufras, and Dimitris Karlis
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1
A short introduction to football
analytics

DOI: 10.1201/9781003186496-1

1.1 Introduction

Football is the most popular sport in the world, with an estimated amount of
3.5 billion fans and 250 million players worldwide; see for example in
Szymanski (2003) and Giulianotti and Robertson (2004). The sport is
played in almost every part of the world, and major football events such as
the World Cup attract enormous numbers of spectators and media attention
possibly more than any other sport event in the world. The football-related
industry has a significant impact, and its economic role is also relevant;
among the others, betting results in football matches are also very popular,
while the value of the soccer betting market is growing.

This growing impact on the economy and also on the daily life of the
world has also increased interest for scientific and academic study of
football. Apart from being a popular entertainment, football is still a sport
which also attracts a large global athlete community. A thriving scientific
field has resulted from the necessity for academic study, research, and
comprehension of sports, and football in particular.

https://doi.org/10.1201/9781003186496-1


One of the most important aspects about football is its inherent
uncertainty leading to unpredictability (Scarf et al., 2022), which is the
result of the fact that football is, in fact, a low-score sport. Typically we
expect, depending on the tournament or league, around two or three goals
per match, while other popular sports like basketball have scores up to 200
per match in total. The small expected number of goals per match and the
high uncertainty of the final football outcome lead to more unexpected or
surprising results, and, therefore, increase the excitement and thrill among
fans. For this purpose, there have been many efforts to comprehend and
model the result of a football match along with the interest of modelling
other, specific, aspects of the game. Thus, the literature on football
modelling is growing rapidly. Currently, the application of machine learning
methods and statistical models for predicting football match results is very
popular among researchers, in both academic and industrial settings, not
only for the possibility of financial gains but also for the difficulties that
such modelling or prediction exercise poses.

Football modelling involves various stakeholders. To start with, the
athletic teams are interested in evaluating their performances, detecting
their weaknesses and identifying the factors that contribute to their success
based on data. Football tactics are also crucial, as well as using data to
assess the performance of players or to devise better strategies during the
game. For instance, there is considerable debate about the optimal
substitution strategy (Silva and Swartz, 2016; Myers, 2012). Furthermore,
injury prevention is crucial in professional soccer (and sports, more
generally) due to the high cost of recovery for players and the significant
impact of injuries on a club's performance (Rossi et al., 2017). Not all
trainers or teams are willing to invest in data analytic methods, but it is
evident that as time passes, more and more teams are adopting such a data-



based holistic approach to generate insights that may help improve their
performance

Another target group for the implementation and use of athletic data
analytics is represented by the football spectators and fans. They are
interested in understanding the game, predicting the outcome of their team
and also engaging in betting activities for fun or for profit. Therefore, they
require to have access to a deeper analysis of the sport based on the
generated data and facts. Often, they also enjoy following and evaluating
the performance and the career of specific (usually their favourite) players,
as well as to get involved in fantasy football games. Fantasy football is a
popular game in which the fan can act as the owner of a team. Under this
role, he is invited to select his own roster from a list of actual players in the
league of interest under a specific budget. After the selection of his team
roster, he competes against other fantasy players by collecting score points
based on the performance of the chosen players in real football games. This
can also involve betting in some countries. As you may understand, fantasy
football has its own modelling techniques (Egidi and Gabry, 2018) with the
analysis focused on the collected points by each player or on smaller events
(such as yellow or red cards) that may attribute or remove points from the
score of each player.

A third relevant stakeholder is represented by the betting companies.
They require models to set their betting odds, although the betting market
itself will influence their decisions later on. Typically, one game can
generate a large number of different and sometimes unrelated bets, which
demand very specialized modelling approaches, different in nature, from
predicting the score or only the outcome of the score difference.

Another group consists of journalists—including TV broadcasters—who
need to examine deeper the data to comprehend the performances of teams



or individual players, visualize them in a clear and appealing way, and
create a more holistic view of the teams. Moreover, the academia, perhaps
wearing many of the previous hats, is especially interested in developing
new models and creating new insights based on football data. For the end,
we have left the sports-related market that needs to gain insights from the
game in order to create new products and services. All the above constitute
the general ecosystem of users of football models and also highlight the
reasons for their growing popularity in the academic agenda. Over the last
50 years, there has been a considerable qualitative improvement regarding
the football data availability. Scores of football matches have been widely
available, in several sources, shortly after the matches. However, since then,
the available data have become more detailed and comprehensive. A rough
timeline of the data availability development is as follows:

The first attempt to collect specific football data was by Reep and
Benjamin (1968) who used manual and personal observation methods.
However, such data are likely to be incomplete and inaccurate.
Moreover, by this way, it is difficult to cover a large number of matches
or a large variety of events.

Later on, the wide broadcasting of football has led to a growing interest
of the analysis of the data related to this sport. Hence, more detailed
data were collected and were made available after the end of each match
in the form of box-scores. A typical box-score can include various
measures that capture specific playing characteristics of each team (or
player) such as minutes played, ball possession time, cards received,
fouls and corners committed, among others.

The next step in the development of recorded football data was the
availability of specific, specialized, in-play event data including their



timestamp (i.e. the exact time that each event appeared in the match);
see for example in Anzer et al. (2021). Event data and positional data
from football matches aim to record all events and movements on the
football pitch and are extensively studied in sports science. Event data
provide a detailed and ordered sequence of all the player's actions
during the match, such as passes, shots, or tackles. Each event is
characterized by the time and location where the action occurred on the
field as well as the event type. Depending on the data provider,
additional information such as a subtype or the outcome of the event
may be given. Data are mostly collected manually by video analysis,
but, lately, there are attempts to automatically detect them through
artificial intelligence (AI) visualization tools.

Recently, tracking data are available from devices that can record the
exact location of the players and the ball almost 20 times per second.
Such data can reveal detailed information about the players, the distance
run by them, their performance and the tactical elements of players and
teams, providing an extremely detailed picture of the team and its
fitness condition at each point of the game. Such data, although not yet
widely available, can transform the way we view the sport, and they can
offer new exciting opportunities for implementing sophisticated
statistical models algorithms (Goes, 2021).

This kind of data is often accompanied with data related to the odds
offered by betting companies, which can largely be interpreted as implied
probabilities for the outcome. Such information can be used, mainly in
Bayesian learning methods, as a source of information from experts about
the match which can increase the accuracy of the implemented methods and
which can increase the accuracy of the implemented methods and improve
the matches' understanding. algorithms



It is evident that football analytics research is growing rapidly. In the
following section, we will attempt to provide some general directions of the
relevant cutting-edge research in the field.

1.2 The early years of statistical analysis of football data

Research on football has a much shorter history than other sports like
baseball and basketball. An early attempt was made by Moroney (1956),
who used the Poisson distribution to fit the number of goals scored in a
football match. This was rather an illustration about the use of Poisson
distribution on football data rather than a deep data-based study of the
game. The underlying assumption was that if pure chance governed the
outcome of a football game, the Poisson distribution would be able to fit the
number of goals. This assumption seems rather simplistic and unrealistic for
football, as it implies that all teams in a league have the same
strength/ability and also that there is no correlation between the two teams
competing during the game, which is counter-intuitive since the two teams
interact. However, the use of the Poisson distribution has been a very
important first step for football research, since, nowadays, it is the initial
starting point from which we can build more sophisticated models.

Reep and Benjamin (1968) is perhaps the first paper that attempts to
provide insights into football by using models beyond the Poisson for
certain aspects of the game. The paper studied the number of successful
passes for one team, which are followed by (a) a shot either a shot at the
goalpost, (b) an infringement, or (c) an intercepted pass attempt. The
negative binomial distribution was used as an indication that other factors
besides chance affect the mechanism, such as individual abilities. The
negative binomial was also implemented to the number of goals in Reep et



al. (1971). Nowadays, this distribution complements the Poisson
distribution as one of the initial points of statistical research in football.
These papers are the two pioneering research works on the notational skill
in football, which also initiated discussion about direct game versus
positional game (i.e. trying to attack as fast as possible versus waiting for an
opportunity to arise in order to attack).

1.3 Modelling approaches

Modelling approaches for football were developed early in the research
agenda. There are different approaches for this task, depending on the level
of information that one aims to model or predict. Do we only focus on
modelling or predicting the outcome of the game (win/draw/loss) or the
score itself? Or do we wish to predict the half-time score only, or both the
final and half-time scores simultaneously? Thus, before providing more
details, we need to ask two specific questions that their answer will lead to
different categories of models.

1. Outcome or score: The first question we need to answer is whether
the match outcome (win/draw/loss) or the detailed score (i.e.
number of goals) should be modelled as the main outcome or
response variable. The latter carries richer information since the
goal difference also captures the volume of the dominance of the
winner while the sum of the goals may imply a poor or more
exciting game with respect to the main events of the game, which
are the goals scored. Moreover, the final match outcome can be
derived directly by the score. Scarf and Rangel Jr (2017) introduced
the terms direct and indirect models for the two alternative



modelling approaches. In Egidi and Torelli (2021a), this distinction
is referred to as result-based versus goal-based models. The debate
about the most appropriate approach is still ongoing and depends
largely on the objective of such models. Note that there are models
that aim to predict the score difference (Karlis and Ntzoufras, 2009)
or even the time between goals. Such models may fall in a grey
area between the above-mentioned broad categories of
direct/indirect or result/goal-based models (Dixon and Robinson,
1998).

2. prediction versus Exploration: A second way to distinguish the
published research work on football analysis is based on whether
the aim is to predict the outcome beforehand or to identify the
important factors that influence the outcome after the game.
Predictive models usually rely on information which is available
before the game based on the abilities of the teams up to that point
—or some proxy like a rating score—and possibly some game-
specific information such as betting odds. For the latter case, we
can fit explanatory models that use information from the match
itself, such as team statistics from the match box-score or even
some socio-economic factors. For instance, Schauberger et al.
(2018a) used on-field statistics from each match as covariates, such
as the distance covered by players, ball possession, tackling success
rate, shots on goal, completion rate, fouls suffered, offsides, and so
on. Such variables are only available after the match, so they
cannot be used prediction but they may reveal the features of the
game that make a team successful. On the other hand, predictive
models should use similar variables but from information gathered
from the previous games (usually 5–10 previous games). The



structure of the models is more or less the same, but the scope is
different and therefore different information in incorporated as
inputs/covariates.

In this section, we briefly discuss some of the most important models,
their rationale, and their historical development. A more detailed and more
mathematical description of the models will be given in Chapters 4 and 5.

1.4 Modelling the outcome

The match/game outcome is defined as a variable with three possible
values: win, draw, or loss for the home team.

One of the earliest attempts to predict the match outcome was made by
Stefani (1980), who used a least squares approach. This model was a simple
normal regression with the goal difference as the response variable and the
team ranking difference as the explanatory variable. The model predicted a
win/draw/loss by considering positive values greater than 0.5 as a home
win, values between −0.5 and 0.5 as a draw, and negative values below 
−0.5 as an away win. Although they model ignored certain characteristics
of football, it was quite sufficient and important progress at that time. The
logic of the models can be connected with a multinomial probit regression
assuming a normal latent variable as response.

Related types of models are the paired comparison models, such as the
Bradley-Terry model (Bradley and Terry, 1952). The Bradley-Terry paired
comparison model was originally developed to associate the subjective
preference of a set of objects when compared in pairs by one or more
judges. This model has been applied to studies of preference and choice
behaviour, as well as to the ranking of competitors and the prediction



outcomes in sports such as chess, tennis, and soccer. The original model
does not account for ties (draws).

Given a pair of individuals i and j drawn from some population, the
model estimates the probability that team i will win against team j using

where Pij = Pr(i > j) is the probability of i team winning j team, and Bi is
a positive real-valued score assigned to team i to represent its latent ability.
This can be expressed as

(1.1)

To apply the model two real data, one needs to estimate the parameters βi

that represent the abilities of the teams. The β's need to be constrained for
identifiability purposes. It model provides a rating of the teams through the
different estimated β's.

This model is essentially just a logistic regression. model Another
approach, mainly used in chess, is the Thurstone-Mosteller model (Henery,
1992), which replaces the assumption of an underlying logistic distribution
with a Gaussian distribution.

The Bradley-Terry (BT) model is suitable for binary outcomes and hence
sports that always have a winner. Nevertheless, it needs to be modified for
football in order to account for the possibility of a draw. There are various

Pij = Pr(i > j) =
Bi

Bi + Bj
,

Pr(i > j) =
eβi

eβi + eβj
  or   log

Pr(i > j)

Pr(j > i)
= βi − βj.



ways to do this. One possible model that allows for draws assumes is the
one proposed by Rao and Kupper (1970), which introduces an extra
parameter θ > 0 in the following way

or alternatively, the model ties introduced by Davidson (1970) given by

for ν ≥ 0. These two models introduce an additional parameter (θ or ν) to
reduce the probability of the two outcomes (win/loss) and attribute it to the
third outcome of draw. Note that we can obtain the original Bradley-Terry
model (without a draw) for θ = 1 and ν = 0.

Before these two extensions, Glenn and David (1960) modified the
Thurstone-Mosteller model to allow small differences to become ties, while
many years later, Kuk (1995) applied the approach model to football. For
more extensions of the Bradley-Terry models, see Baker and Scarf (2020).

Pij = Pr(i > j) =
Bi

Bi + θBj
,

Pji = Pr(j > i) =
Bj

Bj + θBi
,

Pr(i = j) =
BiBj(θ2 − 1)

(Bj + θBi)(Bi + θBj)
,

Pij = Pr(i > j) =
Bi

Bi + Bj + ν√BiBj

,

Pji = Pr(j > i) =
Bj

Bi + Bj + ν√BiBj

,

Pr(i = j) =
ν√BiBj

Bi + Bj + ν√BiBj



Moreover, Tsokos et al. (2019a) provided details for a variety of Bradley-
Terry and additional outcome-based models implemented in football data.

A home advantage can be incorporated into the model (Davidson and
Beaver, 1977). The match outcome for the home team i competed against
team j is represented by the random variable Yij, which takes the values
zero, one, and two (0,1,2) corresponding to a loss, draw or win,
respectively. Under this perspective, the probabilities of the outcomes are
defined by the equation

(1.2)

where δ0 < δ1 < δ2 are cut-point parameters satisfying differentiability
conditions, η is the common home advantage, and aj is the ability of the
team j—similar to parameters βj of the original Bradley-Terry model; see
Equation 1.1. In the above formulation, the sum-to-zero constraint 
∑ aj = 0 is implemented for identifiability reasons. The above model is
nothing more than an ordinal multinomial logistic regression model
assuming proportional odds; see for details in Agresti (2013, Section 8.2.2).

The models described above measure the strength of each team j by using
log-odds parameters, denoted by βj for the BT model and by aj for the
ordered multinomial model specified by (1.2). In these models, the team
abilities are treated as fixed effects over the entire season, implying that the
variation in the match outcomes is attributed to other game-specific factors.
However, this assumption of constant team strength is unrealistic and
inconsistent with the views of sports experts and fans, especially for

Pr(Yij ≤ k) =
exp (δk + η + ai − aj)

1 + exp (δk + η + ai − aj)
,   k ∈ {0, 1, 2},



football. It is evident that teams experience different phases of performance
throughout the season, and their ability parameters should reflect these
changes.

Hence, these fixed ability models are extended as suggested by Cattelan
et al. (2013) in order to allow for time-varying abilities. These dynamic
ability models are extensions of the logistic and ordinal logistic regression
models, which have been applied to sports data by Brillinger (2008, 2009).
Goddard (2005a) employed an ordered probit regression model to forecast
the outcome of a football match. In this model, the match result between
teams i and j, denoted by Rij, is determined by a latent variable y∗

ij and a
Gaussian error term eij, which are assumed to be independent and
identically distributed. The relationship between Rij and y∗

ij is given by

In the above equation, one stands for the home win, 0.5 for the draw and
zero for the loss of the home team (or the win of the away team). The
parameters δ1 and δ2 are thresholds that are estimated from the data. The
latent variable y∗

ij can be modelled as a function of match-specific
characteristics, whose coefficients are also estimated from the data. In the
above specification, if we replace the Gaussian distribution of the error term
with the logistic distribution, we obtain a multinomial logistic model—see
Equation 1.2. A generalization of this model can be obtained by using a
multinomial Dirichlet approach Diniz et al. (2019).

Rij =

⎧⎪⎨⎪ 1   if   δ2 < y∗
ij + eij

0.5   if   δ1 < y∗
ij + eij < δ2

0   if   y∗
ij + eij < δ1



1.5 ELO type ranking

Given that paired comparison models are focusing on the analysis of
ratings, it is reasonable use as predictors rankings or ratings generated by
other models or mechanisms. For example, Hvattum and Arntzen (2010)
used ELO ratings as covariates in a ordered logistic regression model. In
football, this kind of rating system and its variations are widely used for the
FIFA rankings1 for national teams and the UEFA rankings2 for club teams
representing Europe.

The general idea is the following: each team i is assigned an initial rating
represented by a real number Xi. When team i plays against team j, the
ratings of both teams are updated by implementing a function Φ(⋅) that
depends on the difference between the current ratings, i.e. Φ(Xi − Xj).
Note that the sum of all ratings remains constant; it is mathematically
reasonable to centre these ratings in way that their sum equals zero—by this
way, when a team wins some points, the other loses the same number of
points. Practically, this rating scheme is adapted to the characteristics of
each specific sport; for example in international football we have the
FIFA/Coca-Cola World Ranking.

Ratings can be used for predictive purposes. Thus, we can answer
questions like what is the probability of a team rated X to win a team rated
Y? In tournaments which do not have a full round-robin format such as the
World Cup or the Champions League, it becomes of primary importance to
consider information which can make different groups comparable. Such
information may be available via rankings which will leverage for the lack
of games with all pair of teams competing to each other.

Finally, when we consider match outcomes in terms of home
win/draw/away win, a variety of artificial intelligence and machine learning
algorithms are available for direct implementation. However, this may come



at the cost of reduced interpretability of the results and the potential risk of
over-fitting in certain cases (Carpita et al., 2019; Tsokos et al., 2019a;
Baboota and Kaur, 2019a).

1.6 Modelling the score: Issues to consider

An alternative and more detailed approach is based on modelling the score
of the game. The term “score” we refer to the number of goals scored by
each team and, therefore, it refers to a bivariate count. Alternatively one
may consider just the goal difference between the two teams and hence
work with an integer valued random variable defined in Z .

_________________

 1https://www.fifa.com/fifa-world-ranking/men
2https://www.uefa.com/nationalassociations/uefarankings/

1.6.1 Poisson or not Poisson

The selection of an appropriate statistical distribution is the first question
which arises when modelling the final score in football. If pure chance
dominates the game, a Poisson distribution would be the obvious choice.
However, football involves more than pure randomness. Each team
possesses varying offensive capabilities, while defensive strategies and
game-specific conditions can further influence the potential score.

Initial empirical investigations often reveal evidence of overdispersion in
goal scored in a football match. This implies that the observed variance in
goals scored in each match exceeds the expected variance under a Poisson
assumption. This leads to the need for alternative models that can
accommodate overdispersion, such as the negative binomial distribution.

https://www.fifa.com/fifa-world-ranking/men
https://www.uefa.com/nationalassociations/uefarankings/


Additionally, relevant covariates, which can be considered as explanatory
variables, can further alleviate this extra variability.

The presence of overdispersion has been acknowledged in the literature;
see, for example, in Baxter and Stevenson (1988). While any mixed Poisson
distribution can handle overdispersed data, the negative binomial
distribution remains a popular choice due to its widespread use and
established theoretical foundation. It is crucial to recognize that most
models incorporating covariates estimate the mean of a Poisson distribution
for each unique combination of covariates. This effectively utilizes multiple
Poisson distributions rather than a single one, thereby mitigating the issue
of overdispersion to some extent. In cases where observed overdispersion is
relatively minor, this approach may be sufficient.

To illustrate this concept, consider Figure 1.1. Data from the English
Premier League (EPL) spanning over 2000–2001 to 2020–2021 seasons.
Each data point represents the mean and variance of goals scored by a
specific team in a particular year. The diagonal line signifies equi-
dispersion, while the dotted lines represent 95% confidence intervals for the
variance given the mean. These confidence intervals depict the expected
distribution under a Poisson model. As can be observed, a Poisson model
appears reasonably adequate for describing the number of goals scored by
individual teams within the EPL. It is important to note that due to the
inherent variation in team strength, a single Poisson rate may not be
sufficient to capture goal-scoring patterns across the entire league.
Consequently, a slight degree of overdispersion might be expected.



Long Description for Figure 1.1

FIGURE 1.1
Mean and variance per team participation in the English Premier League
(EPL) from 2000–2001 up to 2020–2021.⏎

While Figure 1.1 utilizes EPL data, similar trends are generally observed
in other leagues. Conversely, international matches between national teams
often exhibit higher level of overdispersion, potentially attributable to the
greater differences in the strength of the teams at this level.

1.6.2 Correlated outcomes or not?

A second consideration regards the potential dependence between the goals
scored by each team in the same match. Intuitively, when one team scores a



goal, the opposing team is likely to increase its offensive efforts, potentially
leading to a correlation between the number of goals scored by each side.
This suggests the need for a joint model that considers the simultaneous
occurrence of goals for both teams.

To examine and demonstrate this concept, we have used again the
English Premier League (EPL) data from the 2000-2001 season onwards.
The Pearson correlation coefficient was calculated for each championship
season. Figure 1.2 presents the expected distribution of correlation
coefficients under the assumption of no dependence (i.e., independent
Poisson variables representing goals scored by each team in a simulated
championship). The observed correlation values (red lines) fall within the
expected range based on the simulation. While not definitively conclusive,
this plot suggests that the observed correlation between goals scored by
opposing teams is typically small.



FIGURE 1.2
Distribution of the Pearson correlation assuming no correlation versus
observed correlations for EPL data (fine vertical lines on x axis); The
distribution is based on simulated data of 10,000 championship
replications.⏎



While the above simple correlation analysis provides initial insights of
potential dependence between goals scored by the two opposing teams in
football, several crucial limitations must be considered. First, correlation
analysis assumes a linear relationship between variables. This might be a
suitable starting point, but the dependence between goals scored by each
team might not necessarily be linear. Copula-based models, which will be
discussed later, are more efficient at capturing non-linear relationships that
could be present. Second, our observations suggest significant variation in
the size and even the sign of correlation across different leagues. For
instance, the Bundesliga exhibits negative correlations in most years,
potentially reflecting distinct playing styles or defensive strategies
compared to other leagues. This highlights the importance of considering
league-specific factors when analyzing goal dependence. Third, the above
naive analysis assumes teams with equal abilities, which is unrealistic. The
relative strengths of opposing teams significantly influence goal-scoring
patterns. A more sophisticated model should explicitly account for the
variability in team abilities. Fourth, correlation behaves differently for
discrete data, particularly for small counts like goal numbers. As
highlighted by Karlis and Ntzoufras (2003), even minor correlations can
significantly impact predicted win probabilities. This limitation necessitates
careful interpretation of correlation values in the context of football score
models. Fifth, the structure of competitions can also influence dependence.
International matches, for example, might exhibit different dependence
patterns compared to league matches due to factors like varying team
strengths and less frequent matchups between teams. Acknowledging these
limitations and exploring more sophisticated techniques like copula-based
models becomes crucial to accurately model the dependence between goals
scored by opposing teams in football.



In conclusion, the aforementioned considerations are critical factors in
selecting an appropriate model for predicting football game scores.
Moreover, the heterogeneity of data across leagues highlights the need for
specialized modelling approaches, potentially contributing to the
development and implementation of different models in the field.

1.6.3 Which covariates to use?

Another question concerns the type of covariate information necessary for
the modelling approach. The selection of covariates for sports modelling is
highly dependent on the modelling purpose. Descriptive models, aiming to
explain past outcomes, usually require different covariates compared to
predictive models that aim to forecast future results.

One naturally considered covariate for descriptive models is home
advantage. This well-established phenomenon in various sports, including
football, refers to the tendency of teams to perform better at home. Home
advantage has been attributed to factors such as fan support, familiarity
with the environment, and travel disadvantages for away teams.

Predictive models can benefit from additional covariates beyond home
advantage. These may include team composition, player injuries, and
weather conditions. The specific impact of these variables might depend on
the particular teams involved and the nature of the match. Incorporating
information from betting agencies can be also valuable for predictive
models. Betting odds reflect expert opinions about the outcome and may
contain valuable insights.

The inclusion of specific covariates often depends on the championship
under investigation. While various features and factors have been proposed
as potential covariates in the literature, the statistical significance of some
of them still remains questionable. Additionally, exploratory models,



particularly for international tournaments like the World Cup or European
Championship, may incorporate socioeconomic variables (Groll and
Abedieh, 2013; Groll et al., 2018a).

1.6.4 Temporal correlation or constant across time?

An important consideration for modelling sports data is the potential
presence of temporal dependence. Since teams play matches sequentially
(usually week-by-week arranged in fixtures or match days), observations
may not be independent across time. This raises the question of whether the
data should be treated as a time series.

Several studies have addressed this issue. For example, Harvey and
Fernandes (1989) investigated the time series characteristics of the number
of goals scored by England against Scotland in their annual match (known
as “England Scotland football rivalry”) Their model explicitly accounted
for the temporal characteristics of the data. Similarly, a recent study by
(Mattera, 2023) employed a binary time series analysis to forecast
outcomes. Angelini and De Angelis (2017) implemented a count time series
model to capture temporal correlations in their analysis.

Furthermore, the effects of covariates, particularly those related to team
strength, can also exhibit temporal dependence. Factors such as training
schemes, participation in other tournaments, and player injuries can
influence a team's performance and may change over time. Teams'
performance is typically dynamic, potentially fluctuating across seasons or
even weeks. This dynamism can be attributed to various factors, including
roster changes, player fatigue, coaching changes, motivational shifts, and
cyclical effects due to training programs. To account for this temporal
dependence in team performance, researchers have developed dynamic



models that allow certain effects to vary over time, resulting in greater
model flexibility.

1.7 Models, models, models …

In this Section we introduce and briefly discuss some further models that
are more specialized to treat specific sports problems or certain aspects of a
specific sport.

1.7.1 Basic models for the number of goals

In football, scoring goals is the ultimate objective, making it a natural
choice for the outcome underthe goal-based models. Compared to
win/draw/loss models, goal-based models offer additional benefits, such as
enabling the calculation of implied team abilities.

The initial approach often involves considering univariate discrete
distributions for the number of goals scored by each team. Under the
simplistic assumption that randomness solely dictates football outcomes,
Poisson distributions could be used to model goal counts. However, this
approach disregards the influence of factors beyond randomness, such as
team skill and playing styles.

A critical question then arises: Are alternative distributions more
appropriate to account for the inherent variability or over-dispersion in goal
scoring? Additionally, since the two teams compete against each other,
incorporating a correlation structure seems to be essential for modelling the
final score in a realistic way.

Let X and Y represent random variables denoting the number of goals
scored by the home team and the away team, respectively. The final match



outcome can be categorized as a win for the home team if X > Y , a draw if
X = Y , and a loss if X < Y . Given an appropriate statistical, model we
can calculate the probabilities of these outcomes: P(X > Y ), P(X = Y ),
and P(X < Y ). To achieve this, we require a probability model for the joint
distribution of (X, Y ). This model can be based on either a discrete
distribution assuming independence (where the joint probability is the
product of the marginal probabilities) or a model incorporating dependence,
which necessitates specifying a specific joint discrete distribution. The
current literature offers a rich landscape of statistical models for modelling
or predicting football scores. A detailed description and discussion of these
models will be presented in Chapters 4 and 5. However, we briefly
introduce the variety of existing approaches here to provide a preliminary
overview.

As previously mentioned, a common starting point for modelling the
number of goals scored by each team is the Poisson distribution. For joint
modelling, one approach leverages two independent Poisson distributions,
known as the double Poisson model (Lee, 1997). This, model when
combined with a covariate structure, can provide a good fit in many
applications. An alternative approach, proposed earlier by Maher (1982),
utilizes a correlated Poisson bivariate distribution. This model has been
employed in specific contexts, and more recently, it has been integrated
with advanced variable selection techniques, as demonstrated by Groll et al.
(2018a).

The next step often involves refining the above initial models to better
capture specific characteristics observed in the data. For instance, Dixon
and Coles (1997) proposed an extension of the double Poisson model by
adjusting the probabilities of particular scores, especially (0,0), (0,1), (1,0),
and (1,1). This modified model has gained an increased attention and



applied in several different occasions. Karlis and Ntzoufras (2003)
introduced another approach that increases the probabilities across the
entire diagonal of the joint goal distribution which refers to draws. This
effectively allows for a higher probability of each draw. The observed
excess of draws was more common when the points awarded for win-draw-
loss followed the 2-1-0 system. This has decreased, and in some cases, and
in some cases diminished, with the adoption of the more modern 3-1-0
point system.

To account for more flexible correlation structures between the number
of goals scored by each team, McHale and Scarf (2007, 2011a) proposed a
copula-based model. Copulas allow researchers to specify independent
marginal distributions (for example Poisson) and then introduce dependence
through a chosen copula function. Boshnakov et al. (2017) explored a
different approach. Recognizing that the time between goals scored follows
an exponential distribution in Poisson models, they derived a model based
on the Weibull distribution. This leads to a discrete Weibull distribution for
the number of goals, coupled with a copula to account for correlation and
propose a new bivariate model.

A common feature across these models is the incorporation of team-
specific strength parameters and outcomes within a probabilistic
framework. Additionally, they all account for the home advantage effect. A
widely used method for modelling team attack and defence parameters
within a Poisson framework is often attributed to Maher (1982). This
approach remains a popular choice, as evidenced by its continued use in the
recent works by Koopman and Lit (2015) and Koopman and Lit (2019a).

1.7.2 Dynamic models



The models discussed in Section 1.7.1 assume team ability parameters that
remain constant over time. However, in practice, dynamic models that allow
team-ability parameters to evolve across time are more realistic and can be
more effective in practice although they introduce increased mathematical
complexity. Rue and Salvesen (2000) proposed such a model based on a
Bayesian dynamic generalized linear model, while Owen (2011) introduced
a similar approach for a bivariate Poisson model. More recent work by
Koopman and Lit (2015) also explores dynamic extensions. Additionally,
the work of Crowder et al. (2002) presents another relevant model in this
area.

1.7.3 Models for the goal-difference

An alternative approach is to focus on modelling the goal difference (also
known as the margin of victory) between the two opponent teams rather
than the goals scored by each team. This approach offers several
advantages. Firstly, it eliminates the inherent correlation arising from the
fact that the two teams compete against each other (Karlis and Ntzoufras,
2009). Secondly, it avoids the assumption of marginal Poisson distributions
for the individual team goal counts, allowing for greater flexibility
(Shahtahmassebi and Moyeed, 2016). Additionally, it aligns with certain
betting markets, such as the Asian handicap, which focus solely on the goal
difference. A clear disadvantage of this approach is that such models use
less match related information compared to models that directly model
individual team scores. For example, we will not be able to infer for the
total number of goals scored in each game which is of prime interest in
some bets. However, they still offer more information than basic outcome
prediction models discussed previously.



Karlis and Ntzoufras (2009) proposed a model based on the Skellam
distribution which is the distribution derived from the difference between
two independent Poisson random variables. However, the Skellam
distribution can also be derived under specific other conditions.
Shahtahmassebi and Moyeed (2016) proposed to use a similar model based
on the distribution of the difference of two generalized Poisson random
variables. Furthermore, Manderson et al. (2018) extended this approach to
introduce a dynamic model modelling the difference of the goals. Gaussian
distributions were used in earlier attempts to model the goal difference by
Stefani (1983) and Heuer and Rubner (2009). However, this approach has
severe limitations compared to the methods discussed above since the
normal distribution is not appropriate mathematically for modelling a
discrete random variable.

1.7.4 In-play models

The models discussed so far have focused on analysing and predicting the
final outcome of a match. However, there is growing interest in the world of
betting for models that can predict outcomes during the course of the game,
also known as in-play modelling. In-play modelling aims to predict the final
outcome of the match based on information available during the game.
Examples include calculating the probability of a team winning if the score
is 1-0 at the 20-minute time point, or the impact of a red card on the final
result. A crucial question for such models is which type of in-play
information can improve prediction accuracy. While some existing models
can be adapted to provide conditional probabilities, incorporating additional
in-game information often necessitates modifications of such models.
Dobson et al. (2017) and Asif and McHale (2016) provide examples of such
models.



Titman et al. (2015) employed a real-time, eight-dimensional multivariate
counting process to analyze the interplay between various events within a
football match. This approach not only modelled the interdependence
between home and away team goals, but also sought to quantify the
influence of cards on the game's outcome. The findings of their study
suggested that yellow cards did not significantly impact goal scoring rates,
whereas red cards, particularly when issued to the away team, had a
substantial negative effect. Recent advancements incorporate survival
analysis techniques (Zou et al., 2023), while Klemp et al. (2021) proposed
using event data observed within a specific match to predict the final match
outcome.

1.7.5 Survival analysis models

In this section, we will discuss about models that do not model the number
of goals, but rather focus on modelling the time intervals between goals.
Nevertheless, the two approaches are directly connected since, for example,
assuming a Poisson distribution for the number of goals scored by a team
implies that the time between consecutive goals can be modelled using an
exponential distribution.

Modelling the time intervals between goals offers several advantages,
particularly regarding how we incorporate information during the match.
This approach in our analysis. Therefore, it can be valuable for in-play
models prediction. Several relevant research works have explored this topic,
including Volf (2009), Dixon and Robinson (1998) and Nevo and Ritov
(2013). Another related work is the one by Thomas (2007) who investigated
the inter-arrival times of goals in ice hockey using Weibull and Plateau-
Hazard distributions. As suggested by Boshnakov et al. (2017), the
assumption of Weibull-distribution for the inter-arrival times is reasonable.



However, compared to research on goal counts, significantly less work
has been dedicated to modelling the goal arrival times.

1.7.6 More information about predictive models

For a comprehensive review of existing predictive models, we refer readers
to the works of Scarf and Rangel Jr (2017) and Pearson et al. (2020). A
more detailed description of the models discussed here is provided in
Chapters 4 and 5.

1.8 Other modelling aspects

Beyond game outcome prediction, models for football data can serve
another crucial purpose: to investigate broader hypotheses about the game
itself. In this context, the focus shifts away from predicting the final scores
and instead may centre on understanding and analyzing specific game
characteristics and their potential to influence on the final match outcome.
This research direction has proven highly fruitful, yielding numerous
interesting findings in the literature. Consequently, the need for accurate
and well-specified models becomes very important. To illustrate, some
potential areas of exploration using football models include (but are not
limited to):

The home effect advantage;

The effect of altitude and of the artificial pitch;

The red (and yellow) card effect;

The contribution of Video Assisted Referee (VAR) technology;



The use of tracking data;

The optimal time for substitutions;

Estimation and effect of competitive balance.

1.8.1 The home advantage

Home advantage, a well-established phenomenon in sports, has been the
subject of considerable research in football as well. The concept was first
examined within the context of the World Cup by Dowie (1982), who
observed a success bias for host countries. Building upon this foundation,
Pollard (1986), with their seminar paper, laid the basis for a more
comprehensive investigation of this effect. Using data from various English
and European competitions, Pollard explored the influence of crowd
support, travel fatigue, team familiarity, potential referee bias, tactical
adjustments, and psychological factors on home advantage.

Subsequent studies have further studied specific aspects of home
advantage. These investigations have examined the impact of pitch surface
(Barnett and Hilditch, 1993), travel distance (Clarke and Norman, 1995;
Nevill et al., 1996), potential referee bias (Nevill et al., 2002), and
territoriality (Neave and Wolfson, 2003).

More recently, with the emergence of COVID-19, there has been
significant interest in the impact of playing behind closed doors on home
advantage. Several studies, including those by Benz and Lopez (2023),
Fischer and Haucap (2021), and Sors et al. (2021), have explored how the
absence of spectators may have affected the final results.

A special case of the home effect is the effect of altitude on (certain)
stadiums, which may provide the home team a competitive advantage. For
example, national teams like Bolivia and Chile strategically try to exploit



their high-altitude of their home stadiums, creating a potential confounding
factor with the previously discussed (general) home advantage effect.

This issue sparked the “high-altitude football controversy” when FIFA, in
2007, banned World Cup qualifiers from being played in stadiums
exceeding 2500 meters above sea level. This decision impacted Bolivia,
Ecuador, and Colombia, preventing them from hosting qualifiers in their
capital cities. The limit was subsequently raised to 3000 meters, ultimately
affecting only Bolivia. However, the ban was lifted in May 2008.

Despite the controversy about the best policy and the eventual
withdrawal of any altitude-related ban, the question about the impact of
stadium altitude on match outcomes persists. Chumacero (2009) examined
this using a bivariate Poisson model for international match outcomes but
found no significant effect. However, Casas and Fawaz (2016) reported
evidence of an altitude effect for some South American national teams
using a different dataset. Therefore, there is no clear conclusion about the
effect of stadium altitude, and is still an open issue of dispute in the
academic community.

Similarly to the influence of altitude, another issue that can contribute to
the home effect is the use of artificial pitch surface. Concerns about
natural grass maintenance, particularly watering requirements in hot
climates, have led to the increased adoption of artificial grass pitches. This
trend is particularly evident in some countries with dry climates. While
traditional football has been played on natural grass surfaces, there is a
growing shift towards artificial surfaces at all levels of the game. Major
League Soccer (MLS), the highest professional league in the United States
and Canada, is an major case example. In the 2014 season, four out of
nineteen teams played their home matches on artificial grass (AG).



Despite this rise in popularity, artificial grass pitches continue to generate
controversy among players and coaches. There are at least three primary
reasons for this resistance. The first concern relates to potential player
injuries. While research findings regarding injury risk on artificial versus
natural grass remain inconclusive, some high-profile MLS players,
including David Beckham and Thierry Henry, have expressed concerns and
even refused to play on artificial surfaces. The second reservation is the
perception of increased fatigue experienced by players on artificial grass.
Finally, some players believe that the ball behaves differently on artificial
surfaces, traveling faster and bouncing higher, potentially creating an
advantage for certain teams. However, research by Barnett and Hilditch
(1993) and Trombley (2016) did not find significant evidence to support
these claims.

1.8.2 Card modelling and the red card effect

What about the effect of red cards in football? Red cards are an essential
characteristic of football. The are disciplinary measures where a player is
expelled (without being substituted) for severe rule violations or dangerous
play. A red card may severely influence the outcome of a football match. It
necessitates immediate tactical adjustments, primarily for the team with the
player disadvantage (and secondarily for the opponent). Spectators,
coaches, and bookmakers alike are interested to quantify the magnitude of
this effect: how dramatically can a red card change the strength balance
between the two opponent teams?

This topic has been thoroughly investigated in studies by Ridder et al.
(1994) and Mechtel et al. (2011). The challenge lies in the dynamic nature
of this effect, as the time point that the red card occurs and the momentum



of the match appears to be of primary importance that interact with the red
card's influence.

Based on economic theory, these studies analyze match data from the
German Bundesliga (1999-2009). Their findings reveal a negative
performance impact for home teams that receive red cards. For away teams,
however, the effect is contradictive and depends on the remaining game
time. Interestingly, the results suggest that a late red card for the away team
can even be advantageous. This potentially suggests that the “ten do it
better” myth holds some truth for guest teams to some extent.

Dawson et al. (2007) implemented various models with response the
occurrence of red cards. These models were similar to those used for goals
prediction. For instance, Dawson et al. (2007) explored the use of a double
negative binomial model using Frank a copula to account for correlation.
He also developed a zero-inflated version of this model. Both of these
models were an initial attempt to quantify the potential influence of referees
on card implementation. Thus, a related area of investigation concerns the
potential referee bias in awarding disciplinary sanctions. Buraimo et al.
(2010) examine this issue in the context of the English Premier League and
the German Bundesliga. Their research explores potential biases in referees'
decisions regarding warnings (implied by yellow cards) and player expels
(red cards) by incorporating in-game information within match-level
models.

1.8.3 The contribution of the video assisted referee (VAR)

The recent introduction of the video assistant referee (VAR) system has
generated discussion within the football world. Implemented in most major
championships, including the World Cup since 2018, VAR aims to improve



the accuracy of referee decisions through video review of potentially game-
changing events which are unclear by a simple visual inspection.

Spitz et al. (2021) investigated the impact of VAR by examining 2195
matches across 13 countries. Their findings reveal that VAR conducted
9732 checks for unclear events, with a median duration of 22 seconds per
check. The study demonstrates that the odds of a correct decision were
significantly higher after VAR intervention compared to the initial referee's
decision.

Further insights into the effects of VAR can be found in the works of
Carlos et al. (2019) and Lago-Peñas et al. (2021). These studies explore the
impact of VAR on specific game characteristics by analysing data from
various leagues before and after its implementation. For example, Carlos et
al. (2019) examine potential changes in gameplay, while Lago-Peñas et al.
(2021) focus on the Spanish La Liga.

1.8.4 The use of tracking data

In recent years, player tracking technology was introduced in football
mainly in more advanced competitions and in wealthier teams. This
technology has allowed these teams immediate access to information of
player movements across the whole pitch, throughout a match. These
devices generate massive datasets throughout a match, capturing player
movements at a frequency of 30 observations per second. This detailed
information allows for in-depth analysis of player attributes and behaviours,
providing valuable insights into team tactics, passing networks, space
creation, and overall coordination. Therefore, the use of tracking
technology and obtained data, according to experts, has revolutionized
football analysis.



The most popular and comprehensive metric resulted by such technology
are the “expected goals” (xG). This metric measures the quality of a scoring
opportunity by considering factors such as short distance, angle, and type
(header, free kick, etc.). This is achieved via the implementation of a
logistic regression model which estimates the probability of success of each
chance or shot. By comparing xG to actual goals scored, analysts can assess
the offensive and defensive efficiency of each team. However, xG remains a
work in progress. It is open to critique by sport analysts since the existing
models do not account for defensive actions, player skill variations, and its
generalizability across different leagues.

For further details on tracking data analysis, we refer the interested
reader to the work of Goes et al. (2021). Their comprehensive survey of the
football tracking data literature explores existing research and identifies
promising areas for future investigation.

1.8.5 Planning the optimal time for substitutions

The question about the best time point for substitutes in football has
returned in the foreground after the recent increase of the number of
substitutions from three to five in most competitions (excluding the English
Premier League). This adjustment, combined with an extremely busy
fixture calendar, has highlighted the need of maintaining player fitness and
weariness.

Myers (2012) proposed a specific substitution plan for teams that are
behind in score during a match. They suggested that making the first
substitution by the 58th minute, the second by the 73rd minute, and the
third by the 79th minute can potentially double the chances of a comeback
in the match. However, the authors acknowledge that even with this



strategy, the odds of successfully reversing a match outcome remain less
than one.

Silva and Swartz (2016) offer a different perspective on substitution
timing. The authors review the substitution rule proposed by Myers (2012)
and provide a discussion of the results. They further present a new approach
based on Bayesian logistic regression. According to their findings, they did
not identified any specific time point where substitutions offered a clear
advantage.

1.8.6 Competitive balance: A key factor in fan engagement

Competitive balance, in the context of sports leagues, refers to the closeness
of playing strengths of participating teams. This concept is closely
associated to the inherent uncertainty of sporting outcomes, where the final
result is not predetermined. This uncertainty is that makes football so
captivating for fans. Football leagues or competitions with a high degree of
competitive balance tend to attract larger audiences due to the
unpredictability of match results, stimulating excitement and interest in the
sport.

Competitive balance has become a central concept within the economic
theory of professional sports leagues. Growing recognition of its
multifaceted impact has generated further research. For instance, a strong
correlation exists between competitive balance and fan attendance/welfare.
Fans are captivated by matches that offer an increased level of
unpredictability, as it enhances the thrill and excitement of the competition;
for a recent review on this topic, see in Pawlowski and Nalbantis (2019).

Finally, football prediction models can serve as a basis to calculate
competitive balance indices (see, for example, in Deb, 2022). Ongoing



research efforts are directed towards quantifying and understanding the
uncertainty that remains unexplained by such models.

1.8.7 Concluding thoughts and discussion

While this section highlights several modelling topics of ongoing research
in football, it is by no means exhaustive. Research in this area continues to
evolve, tackling not only new modelling challenges and specific questions
but also interesting methodological innovations.

One such challenge involves comparing different models and assessing
their ability to predict outcomes or scores. The question of how to measure
model success has been addressed in the literature, with various metrics
proposed such as the Brier score and the ranked probability score.
Constantinou and Fenton (2012a) provide a more in-depth discussion on
this topic, which will be further explored in Chapters 3 and 7.

1.9 Organization of the book

As discussed in this chapter, football modelling has emerged as a
flourishing research area that offers a powerful quantitative tool for
understanding and analyzing the game of soccer. By analysing data and
models effectively, all football related stakeholders, from teams to
spectators, can be the receivers of valuable insights. The remainder of this
book is organized as follows.

Chapter 2 introduces and presents the necessary tools how to organize
data from football and how to implement some basic models and extract
information from them. This chapter demonstrates the application of a
simple model for prediction purposes, exploring various estimation



methods, including those based on maximum likelihood and Bayesian
approaches.

Chapter 3 discusses and illustrates league table predictions using Monte
Carlo simulations. It also covers metrics for evaluating model effectiveness
and for performing model comparisons. Finally, the chapter addresses
model checking procedures to ensure the validity of model assumptions and
criteria.

Chapter 4 goes deeper into several basic existing football prediction and
modelling approaches, providing comprehensive mathematical details. We
present these models in a self-contained manner, offering sufficient
information on each model and underlying the connections between them.
The chapter follows an incremental structure, building upon previously
introduced models before presenting new ones. It begins by exploring some
fundamental models, starting with the double Poisson model, and
progresses through detailed explanations of the bivariate Poisson model and
their dynamic extensions. For each model, we will discuss their
formulation, estimation methods (briefly), potential limitations, unique
contributions, advantages, disadvantages, and their implementation through
the footBayes R package accompanying the book. We will provide a
detailed description of the package's functionalities, accompanied by
extensive illustrative examples. We will in fact deeply introduce this
package in order to fit the basic (and more advanced) models and extract
the main summaries by using the Italian Serie A 2009/2010 data as a
motivating example.

Next chapter, Chapter 4, focuses on additional models, such as those
designed to model the goal difference—Skellam and student-t models. The
practical implementation of these models will be illustrated through some R
packages, mainly the aforementioned footBayes package. This chapter



introduces the essential mathematical concepts underlying the models and
examines their application to the Italian Serie A dataset.

An illustrative modelling experience for the Euro 2020 and World Cup
2022 tournaments is provided in Chapter 6. The analysis and the predictions
are obtained through the footBayes package described in Chapters 4 and 5.

The final chapter, Chapter 7, explores the intersection of football
modelling and betting. The betting industry is a major consumer of football
data and also generates valuable data from its own models. This chapter
introduces some fundamental concepts related to betting, including the
relationship between odds and game probabilities, using examples for
clarity. We will also discuss betting strategies, such as the well-known
Kelly criterion. Our aim is to highlight how models can play a crucial role
in, betting even though odds are also influenced by market factors. By
considering betting odds as implied probabilities, we will discuss their
usage, comparison methods, and practical applications for bettors, while
acknowledging the additional information that bettors themself contribute
to the market. We will provide a practical case study to construct some
betting strategies in order to win money from the bookmakers betting
companies.

The book is accompanied by an appendix which serves as a reference for
more advanced mathematical and computational details, particularly for
specific methodologies and models.



2
Methods, algorithms and
computational tools

DOI: 10.1201/9781003186496-2

2.1 Model formulation

In football analytics models for the final goal score, we consider a dataset
where every observation i ∈ {1, … ,n} in our dataset (row in the
associated data file) will refer to each game/match; n is the number of
games. As responses we consider the number of goals scored by each team
denoted by Yi1 and Yi2 for the first (usually the home team) and the second
(usually the guest or away) team. The rest of the columns in our dataset will
record the two competing teams and specific characteristics of the game or
the teams playing the game. In many occasions the explanatory variables, or
features, are usually performance indicators for the two opponent teams.
This data format will be refereed at the bivariate-data format.

We can have two different types of models: (a) a predictive model, or (b)
a descriptive or interpretable model. The aim in a predictive model is to be
able to efficiently predict the final score of the game with information
which is available before the beginning of the game. On the other hand, a
descriptive or interpretable football analytics model aims at understanding
the game itself and what makes a team a winner. The latter models are more
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useful for football managers since they help them to understand what are
the weaknesses and the strengths of each team. By this way, football
managers can make correction moves in practice or in transfers to improve
the performance of their team.

As it is obvious the covariates we consider in these two types of models
are different. The predictive models can use information and team
performance indicators from the “near” past while the interpretable models
can use the performance metrics of the current game (usually called box-
score statistics) that are only available after the end of the game.

Hence, generally we can write that

(2.1)

where θi1, θi2 are parameter vectors referring to the distribution of the
goals of each team, while ρi are parameters referring to the joint modelling
of the two responses (including correlation or equivalent association
parameters).

2.1.1 The double Poisson model

The simplest form of (2.1) is the so-called double Poisson (DP) model
where we assume

(2.2)

(Yi1,Yi2) ∼ f(θi1, θi2, ρi)  for i ∈ {1, … ,n},

Yiℓ ∼ Poisson(λiℓ),   for ℓ = 1, 2 and i ∈ {1, … ,n}.



This model can be easily fitted within the framework of the Generalized
Linear Models (GLMs) (Nelder and Wedderburn, 1972) using standard
software such as R or SPSS. We only need to re-arrange our data such that
each game will take two rows in the dataset (with a total of 2n rows) and
one response which will be the number of goals scored by each team and
with the covariates repeated in an appropriate way—see Section 2.1.2 for a
more detailed description.

Moreover, the above model assumes independence between the goals
scored by the home and away team conditionally on the model parameters.
Any game association or correlation will be indirectly introduced via the
estimated model parameters.

This simple model will be considered here as the basic springboard in
order to extend our modelling approach and build more realistic models
which will account for the unique, specific characteristics of association
football. Note that the Poisson distribution plays a central role in football
score models (see Chapter 5) and it is commonly used to describe the
number of successes (here number of scored goals) within a fixed time
interval (here usually 90 minutes + added time). Poisson-based models are
often also called Poisson regression or Poisson log-linear models; the latter
name has its source in the use of the logarithmic link within the GLMs
framework, being the logarithm the standard canonical link function in such
models. Generally we can write

where ηiℓ is the predictor for game i and team ℓ (ℓ = 1 for the home team
and ℓ = 2 for the away team) when using the bivariate data arrangement.
The predictor ηiℓ is a function of the covariates X (1)

ij  and X (2)
ij  which denote

logλiℓ = ηiℓ,  with ηiℓ = ψ(X (1)
i1 , … ,X (1)

ip ,X (2)
i1 , … ,X (2)

ip )



the j-th feature/covariate values of the i-th game for the home and the away
team, respectively. Usually, we consider the simple function for the
predictor, i.e. we consider a linear predictor which takes the form

In the following of this section we will refer to different covariate
structures used for the (linear) predictor of such models. We will start from
the simplest model which is called the “vanilla” model and has been
established through the years as the easiest and basic starting model not
only for football but also for other team sports.

2.1.2 The vanilla model structure

The simple vanilla model has its origin back to 1982 in the original work of
Maher (1982). It was subsequently used by other researchers like Lee
(1997) and Karlis and Ntzoufras (2000a) to analyze football data. Following
these early publications, Karlis and Ntzoufras (2003) and other researchers,
such as Baio and Blangiardo (2010), Egidi et al. (2018b) and Owen (2011),
have used this formulation in order to build efficient extensions.

The main characteristic of this model is that it is very simple and needs
minimal information in order to be fitted. When a reasonable amount of
games is gathered, then its accuracy is surprisingly adequate given the
minimal information used. Hence any new formulation should be compared
with such a basic model.

ηi1 =  β0 +
p

∑
j=1

β
(1)
j X

(1)
ij +

p

∑
j=1

β
(2)
j X

(2)
ij ,

ηi2 =  β0 +
p

∑
j=1

β
(1)
j X

(2)
ij +

p

∑
j=1

β
(2)
j X

(1)
ij .



Using the bivariate-data formulation, the double Poisson vanilla model is
written as

(2.3)

for i = 1, … ,n. In the above model formulation:

n is the number of games under consideration;

μ is a constant parameter;

home is the home-effect;

hi and ai are home and away teams in game i;

attk and defk are the attacking and defensive effects or “abilities” of the
k-th team for k = 1, 2, . . . ,K; and

K is the number of teams in the data; usually K ∈ 14, 16, 18, 20 for
major national domestic leagues.

This model simply implies that the number of goals scored by each team
depends on the home-effect benefit (which is well established in the
literature), the attacking ability of the scoring team, and the defensive
ability of the team accepting the goals. Note that the effect of the attacking
abilities is positive, which means that the greater is the team ability, more
goals are scored by this team and hence its performance is better. On the
other hand, the effect of the defensive abilities is negative on the log-
expected goals of the scoring team. Hence, large negative values will

logλi1 = μ   + home  +  atthi
+ defai

logλi2 = μ   +  attai + defhi
,



decrease the expected number of goals of its opponent. Therefore, higher
defensive ability values indicate teams with worse defensive ability, while
smaller values imply teams with greater defensive power.

Interpretation of model parameters

In order to make the above model identifiable, we use the sum-to-zero
constraints on the team ability parameters attk and defk. Hence, we impose
the constraints

The above constraint in practice implies that in the estimation procedure we
estimate K − 1 parameters while the missing parameter is simply estimated
by the equations

In the above equations we have removed the first parameter corresponding
to the ability parameter of the first team. Another usual choice is the last
parameter (denoted here by K). The values of the estimated parameters will
not be affected by the choice of the missing parameter. In the following, we
will assume that the first parameter is eliminated from the model
formulation and it is calculated as a simple function of the remaining ones.

Note that the sum-to-zero (STZ) constraint is preferable here over the
more usual corner (or treatment) constraint or parametrization for

K

∑
k=1

attk =
K

∑
k=1

defk = 0.

att1 = −
K

∑
k=2

attk and def1 = −
K

∑
k=2

defk .



interpretation reasons. The STZ approach will produce abilities which are
compared with the overall team scoring ability (in the log-scale here).
Hence positive attacking ability parameters mean that the team is better
than an average team while negative values imply that the attacking team
ability is below average.

Similar is the interpretation for the defensive abilities but with opposite
sign, since higher value here implies worse defence or restraining power.
Hence positive defensive parameters indicate teams with defensive ability
worse than an average team while negative defensive parameters indicate
teams with defensive ability better than an average team. For more details
about these constraints, we refer the reader to Chapters 4 and 5.

Finally, the exponent of the constant parameter (eμ) provides the expected
number of goals of the away team in a game between two teams of average
attacking and defensive strength. Equivalently, the value of eμ+home

provides the expected number of goals of the home team in a game between
two teams of average attacking and defensive strength. Therefore, the
exponent of the home parameter simply provides the relative increase of the
expected home goals in a game between two teams of average attacking and
defensive strength. The latter can be further used also for two teams of
equal strength (where atthi

= attai  and defhi
= defai) since

Furthermore, if we consider the log-ratio of the expected goals in each
game then we obtain

log( λi1

λi2
) = μ + home + atthi

+ defai − μ − attai − defhi

= home + (atthi
− attai) + (defai − defhi

).



(2.4)

where abilityk = attk − defk can be considered as overall team abilities
which are simply given by the difference between each team's attacking and
defensive ability. Returning to the interpretation of the home effect, ehome

can be generally considered as the relative increase of the expected home
goals in a game between two teams of equal strength (or overall abilities).

2.1.3 Additional features for prediction or interpretation of
the game

As we have already discussed, the vanilla model is an initial starting point
in order to build more sophisticated predictive or descriptive models for
association football.

The types of covariates/features that can be used to enhance the model
formulation depends on the purpose of the analysis. If prediction is the aim,
then performance metrics based on previous games (usually averages) or
older historical data can be used )Ulmer et al., 2013; Tsokos et al., 2019a).
Moreover, economic data such as overall budget and transfers are also of
prominent importance (Egidi et al., 2018b). On the other hand, if
“understanding the game” in order to help the manager or the team officials
to improve the team is the aim, then box-score statistics based on each and
that are only available at the end of the game can be used instead. In both
occasions, but more often in the predictive modelling approach, the number
of covariates p which can be collected is large, usually larger than the

log( λi1

λi2
) = home + (atthi

− defhi
) − (attai − defai)

= home + abilityhi
− abilityai



number of the observed games n. Hence, shrinkage methods such as lasso
(Tibshirani, 1996) are used to get-rid-off fast and efficiently variables that
are not useful in the final model (Groll et al., 2015).

In the following we will call such football models based on the use of
team features/covariates as (predictive or descriptive) performance models
in order to discriminate them from the simple vanilla structured models.
This label is used conventionally due to the prominent importance of the
team performance metrics in determining the final score of a football game
and it does not mean that any additional team non-performance features
(such as economic indicators) cannot be included in the model formulation.

2.1.4 Performance features vs team abilities

When using performance-based models (discussed in Section 2.1.3), the
team abilities of the vanilla model may become non-significant. The main
reason for this, is that the ability parameters usually carry similar
information as the ones extracted by performance metrics of other team
characteristics. This is one of the main reasons why performance models
with an increased number of covariates might not demonstrate, as much as
we would expect, improved model fit or predictive ability; see in Van
Eetvelde et al. (2021) for an illustration where the two types of models
converge on similar predictive ability when the number of games increases.
Similar results were reported in Tzai et al. (2021) for Basketball games in
the Greek and the Spanish national leagues.

Since the two types of model will provide similar quality of predictions, a
reasonable question is why to use predictive models which require a large
amount of additional covariate information instead of the much simpler
vanilla models. The main reason for using performance-based models is
that vanilla models need an increased number of games in order to be able



to estimate the performance of each team. Moreover, vanilla models work
efficiently in full balanced leagues of round-robin type of tournaments and
not in elimination (knock-out) cups or hybrid tournaments. Especially, in
the latter format, when a group-stage of several mini-round robin leagues is
followed by elimination phases, the vanilla model will totally fail unless we
include some data from the knock-out phase. The reason is that the abilities
of each group (mini-round robin league) are calculated relatively to the
teams within each group. So these abilities cannot be used to compare
teams of different groups. After at least one knock-out phase, we will have
information across the abilities of the teams of different groups since we
will have some cross-over games. Nevertheless, this information will be
again weak since it will be based only on a few games. Finally, the abilities
of each team need data only of the current season. Hence, at the beginning
of each season, it is not reliable to use a vanilla model for prediction. Note
that data of the first half of a round-robin league are enough in order to
generate reliable predictions using the vanilla model (even for the final
rankings of the league).

On the other hand, the performance models are based on the overall
association between general performance indicators (or other
characteristics) with the final score. Assuming that the game changes
slowly across time, data from previous seasons are relevant, so we can use a
performance-based model also for prediction after a few games. For hybrid
tournaments such as Euro, World cups and Champions' League, overall
FIFA and UEFA team ratings can be officially used to capture the level of
each team and, indirectly, of each group (Groll et al., 2015, 2018b).

To conclude with, the vanilla model is not so bad in comparison with the
feature-based performance models. It is simpler but requires an increased
number of games from the current season in order to obtain reliable



predictions. On the other hand it is not useful for the beginning of the
season or for tournaments of other types. Also, data from previous seasons
may be irrelevant and might not offer reliable estimates of the team abilities
in the current season. On the other hand, the performance-based models
need additional number of information in the form of covariates but lower
number of games. They can be used more efficiently at the beginning of the
season and for tournaments of more complicated structure. Finally, data
from previous seasons are also relevant and offer an increased number of
precisions in the estimates.

2.1.5 Models for international and European club
tournaments

For hybrid tournaments of mini-round-robin qualification rounds followed
by elimination (knock-out) phases like the ones in tournaments of national
teams (e.g. Euro or World cups) and international club competitions such as
the UEFA Champions League or the Europa League, models with
covariates are considerably better fitted than the vanilla models. Simple
vanilla models are totally inappropriate when using data from the group
phase in order to predict the outcomes in the knock-out phases. The reason
is due to the fact that the attacking and defending parameters we estimate
are relative to the strength of the other teams. So when the teams of
different groups do not cross-over in games, the corresponding parameters
are estimated only with regard of the opponents of each team. Hence, if a
team is much better than its opponents in a specific group it will appear
with exceptional attacking and defensive abilities due to the fact that the
overall level of the group was lower than the corresponding performance
level of the rest of the groups. In order to have a model which will work
effectively, we need at least a common quantitative covariate which will



reflect the quality of each team (usually these are UEFA or FIFA ratings, as
in Groll et al. (2015, 2018b). We refer to Chapter 6 for further details about
the modelling of these kinds of tournaments.

2.2 How to setup the data

2.2.1 Game-arranged data

As we have already mentioned at the beginning of this chapter, the natural
arrangement of our dataset is to consider a n × (2p + 2) data matrix, where
n is the number of games under consideration and p is the number of
covariates under consideration for each team. The goals scored by the two
opponent teams will be denoted as Yi1 and Yi2, where the former denotes
the home team and the latter the away/guest team. From the covariates we
need to consider, two are the most basic ones which are required to fit the
vanilla model: the home team and the away (or guest) team. These variables
will be considered as categorical with levels k = 1, … ,K and their level
codes will be denoted as hi and ai; see Table 2.1 for an example of such
dataset.

TABLE 2.1
Example of a game-arranged dataset⏎

Final
Score

Team Covariates
Game Home Away

(i)
Opponent
Teams hi ai Yi1 Yi2 X

(1)
i1 … X

(1)
ip X

(2)
i1 …



2.2.2 Univariate-arranged data

When we fit the standard double Poisson model, or generally models
assuming conditional independence, then the data should be arranged in
univariate fashion assuming one response: the number of goals scored by
each team. Hence, the data of each game will be placed in two data rows.
The final dataset will now have dimension of 2n rows and p + 3 covariates
(including the additional dummy of the home effect denoted by H). We will
refer to this data arrangement as the univariate data arrangement. All data
and related parameters under this setup will be denoted by using a “*”
superscript to discriminate from the original, game-oriented approach,
presented in Sections 2.1.1 and 2.1.2. It is also important to note that the
team variables now refer to the scoring team and the team accepting the
goals in contrast with the game-oriented approach where the covariates

Final
Score

Team Covariates
Game Home Away

(i)
Opponent
Teams hi ai Yi1 Yi2 X

(1)
i1 … X

(1)
ip X

(2)
i1 …

1 Man Und
– Chelsea

10 2 1 1 x
(1)
11 … x

(1)
1p x

(2)
11 …

2 Liverpool
–
Coventry

8 3 2 0 x
(1)
21 … x

(1)
2p x

(2)
21 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
n Teams of

game n
hn an Yn1 Yn2 x

(1)
n1 … x

(1)
np x

(2)
n1 …



were referring to the home and away team. Finally, the home team is now
indicated by using a dummy indicator variable called H. The parameters of
these covariates will correspond to the attacking and defensive parameters
(abilities) of the model and the corresponding covariates as attacking and
defending teams. Hence for the first game of Table 2.1 we will consider the
following values: Goals scored Yı = 1∗, Hı = 1, Attacking/Scoring team
Ai= 10 (Man Und), Defending Team Di=2 (Chelsea) for the first row and
the values Y ∗

ı
= 1, Hı = 0, Attacking/Scoring team Ai= 2 (Chelsea) and

Defending Team Di= 10 (Man. Utd). Note that the attacking team and the
defending team are reversed in the second row. Similarly, the covariates
now will refer to the attacking and defending teams and in the second row
they will be reversed; see last line of Table 2.2 for the general
representation.

TABLE 2.2
Example of a univariate-arranged dataset⏎

Attacking Defending
Game Scoring Goals Home Team Team

i (Gi) Team (Y ∗
i ) (Hi) (Ai) (Di) X

∗(
i1

1 1 Man Und 1 1 10 2 x
(1
11

2 1 Chelsea 1 0 2 10 x
(2
11

3 2 Liverpool 2 1 8 3 x
(1
21

4 2 Coventry 0 0 3 8 x
(2
21

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
2n−1 n Home

Team n
Yn1 1 HTn ATn x

(1
n



2.2.3 Model formulation for univariate-arranged data

Under the univariate-arranged data representation, the model formulation
should be slightly modified. Hence the Poisson model is written as

Note that ı = 2i + 2 − ℓ with i ∈ {1, … ,n} and ℓ = 1, 2. In the above
formulation, ηvan

ı
 is the part of the model referring to the vanilla

representation, ηcov
ı

 is the linear predictor incorporating additional team
covariates (usually based on performance). The simple vanilla model arises
if ηcov

ı
 is removed from the above formulation, while usual predictive

models based on performance arise using only this part in the model.
Hybrid models combining both parts in the formulation are rarer in the
literature since the abilities appearing in the vanilla component of the model
are usually collinear with the performance features of the second part,

Attacking Defending
Game Scoring Goals Home Team Team

i (Gi) Team (Y ∗
i ) (Hi) (Ai) (Di) X

∗(
i1

2n n Away
Team n

Yn2 0 ATn HTn x
(2
n

Y ∗
ı

∼ Poisson(λ∗
ı
)

logλ∗
ı

= μ + ηvan
ı

+ ηcov
ı

ηvan
ı

= home × Hi + attAı
+ defD

ı

ηcov
ı

=
p

∑
i=1

β
(1)
j X

∗(1)
ıj +

p

∑
i=1

β
(2)
j X

∗(2)
ıj

for ı ∈ {1, … , 2n}.



hence they do not improve the predictive ability of the model when
introduced additively.

In the above formulation, the model parameters can be denoted by the
parameter vector

θ = (μ,home, def2, … , defK, att2, … , defK,β(1)
1 , … ,β(1)

p ,β(2)
1 , … ,β(2

p



2.3 Methods of estimation Part I: The classical approach and
the maximum likelihood estimation

In modern statistical science, there are two dominant approaches for
parameter estimation. In the following sections, we will shortly refer to
these two main approaches used for estimation of the model parameters.
The first is the classical approach based on the notion of likelihood function
and the second is the Bayesian approach which is based on the notion of the
posterior distribution. Since this book focuses on the practical side of the
implementation of statistical models in football data, we will try to provide
only the basic notions needed to understand the implementation of the
methods. For more details we refer the reader to specialized books of
Statistical inference. In this section will start by briefly describing the first
approach.

2.3.1 The likelihood function

Traditionally, in statistical inference, model parameters are considered as
fixed but unknown parameters which we wish to calculate for a given
population. The way to do so is to consider a representative, randomly
drawn part of the population, which is known as the sample. The data we
usually analyze in any survey or study is a sample from a population. The
aim is to (approximately) calculate the population parameters of the model
from the sample. This is achieved by mathematical functions which are
called “Estimators”. Estimators are selected in a way that they have some
good properties which ensure that when the sample is large then they will
give you the correct parameter value. The value of the estimator from each
sample is called estimate of the parameter. If we take multiple different
samples, then we will have many different values of the estimator (i.e.



different estimates). This induces that an Estimator is a random variable
which takes different values for each sample. As a random variable it will
be accompanied by a mean/expected value and a standard deviation which
will reflect the variability of the estimator.

One of these desirable properties of an estimator is unbiasedness. An
unbiased estimator has mean/expected value equal to the parameter of
interest. So essentially it means that all estimates will be around the true
value. Under this perspective, the standard deviation of an unbiased
estimator captures how close the estimates will be in the true parameter
value. Therefore it is the error of the estimator and (its inverse) captures the
precision of the estimator. Hence, the standard deviation of an estimator is
called its standard error. Therefore, we wish to have unbiased estimators
with as small as possible standard errors. For this reason, when we compare
different estimators we may select the one with the smallest standard error.
Under this perspective, another desirable property of the estimators is
consistency. An estimator will be consistent if it converges (in probability)
to the parameter of interest as the sample size increases. In principle this
means that our knowledge becomes more and more precise about the
parameter of interest as the sample size increases.

So what is the likelihood function and why maximizing it is so important
for statistical inference? In order to specify the likelihood, we firstly need to
specify the notion of the statistical model. Let us assume a random response
variable Y, in our context here the number of goals, the goal difference or
the match outcome. For this match outcome variable we assume a
probability distribution f(y|θ), i.e. a probabilistic rule describing the
probabilities of all the possible outcomes. The vector θ = (θ1, … , θp)

captures the model parameters that we wish to estimate from the data. For
example, in the vanilla Poisson model described in Sections 2.1.1 and 2.1.2,



θ will be including the constant term, the home effect and the defensive and
defensive team abilities. The distribution f(y|θ) is also called the sampling
distribution of the model and its shape or type is one of the main
assumptions when we use parametric modelling to describe a stochastic
phenomenon. Hence, a statistical model is mainly characterized by the
sampling distribution we assume for the (response) variable of interest. For
a set of random variables Y = (Y1, … ,Yn) representing the possible
outcomes of a sample of n observations, the joint density or probability
function for a given sample y = (y1, … , yn) is given by

This joint distribution is further simplified to

when the random variables Yi are assumed to be independent and identically
distributed (which is a realistic assumption for a number of popular
models). In the following we will assume the case of independent and
identically distributed random variables.

The likelihood function is nothing more that the sampling distribution
when seen as a function of the parameters of interest for a given sample y,
that is

f(y|θ) = f(y1, … , yn|θ).

f(y|θ) = f(y1|θ) ⋅ f(y2|θ) ⋅ … ⋅ f(yn|θ) =
n

∏
i=1

f(yi|θ)

L (θ) = f(y1, … , yn|θ) =
n

∏
i=1

f(yi|θ).



Since the y is observed, we assume that its probability or its density f(y|θ)

will be high. So we work with the inverse logic and we consider as
estimators θ̂ the functions we obtain if we maximize f(y|θ), and therefore
the likelihood function L . It is proven that maximum likelihood estimators
(MLEs) have a number of important asymptotic properties such as
consistency, efficiency and normality. In principle this means that the MLEs
estimate the true value for large samples with the smallest possible variance
and moreover we can assume that its distribution is normal allowing for the
implementation of a number of hypothesis tests. Moreover, we work in the
log scale in all computations since, being the logarithm a continuous
monotonic function, the maximum value will remain the same. Hence, in
practice, we maximize the log-likelihood denoted by

2.3.2 Maximizing the likelihood

In order to obtain the maximum likelihood estimates (MLEs) θ̂, we need to
maximize the likelihood by taking the first derivative of the log-likelihood
and setting it equal to zero. Hence, the MLE θ̂ of θ will be one of the values
that solve the equation

ℓ(θ) = log f(y1, … , yn|θ) =
n

∑
i=1

log f(yi|θ).

dℓ(θ)
dθ

= 0



(an extra requirement is needed to decide if the implied point is a point of
local maximum but we will not refer to it here to keep the text simple).

In order to understand how this can be used, we may consider as an
example the simple normal linear regression model. Then the model is
written as

where N(μ,σ2) is the normal distribution with mean μ and variance σ2 and
density function

For this model, the parameters we wish to estimate are θ = (α,β,σ2).
Then, the log-likelihood will be given by

Taking the derivatives of the log-likelihood with respect of α, β and σ2 we
end up with the following MLEs

Yi ∼ N(α + βxi,σ2)

f(y;μ,σ2) =
1

√2πσ
e− 1

2 (
y−μ

σ
)

2

.

ℓ(θ) =
n

∑
i=1

log{ 1

√2πσ
e

− 1
2 (

yi−α−βxi
σ

)
2

}

= −
n

2
log(2π) −

n

2
log(σ2) −

1
2σ2

n

∑
i=1

(yi − α − βxi)
2.



The above is a relatively simple example where we can obtain the MLEs
in closed form expressions using differential calculus. Nevertheless, in most
cases we cannot have the MLEs in closed form expression. In such
occasions, optimization algorithms are used. The most common methods in
statistics are the Newton-Raphson algorithm and the Expectation-
Maximization (EM) method which we will briefly describe in the following
paragraphs.

The Newton-Raphson algorithm actually is not a method for
maximization, but it is used to find the solution of an equation of the form 
f(x) = 0; thus, it can be used to solve the solution of ℓ′(θ) = 0 finding by
this way the local maxima of the likelihood method. The Newton-Raphson
algorithm is the standard way to find the MLEs in generalized linear
models. It is based on the simple iterative equation

which will be stopped when |xt − xt−1| < ϵ or |f(xt)| < ϵ′ for some
selected precision values ϵ and ϵ′. The implementation of Newton- in the
univariate case is summarized as

Algorithm 1 Newton-Raphson Algorithm for the univariate case

β̂ =
∑n

i=1(xi − x)(yi − –y)

∑n
i=1(yi − –y)2

α̂ = –y − β̂x

σ̂2 =
1
n

n

∑
i=1

n

∑
i=1

(yi − α̂ − β̂xi)
2.

–

–

xt = xt−1 +
f(xt−1)
f ′(xt−1)

 for t = 1, 2, …



Input: Set precision parameter ϵ′ > 0.

Initialize: Set initial value x0 for x.

For t = 1, 2, … , REPEAT:

Set xt = xt−1 + f(xt−1)
f ′(xt−1) .

Stop for-loop if |f(xt)| < ϵ′.

End of loop-for.

Output: Report xt.

For its implementation in statistics we will need to use the multivariate
extension of this equation which involves both the first and the second
derivatives of the log-likelihood with respect to each element of the
parameter vector θ. Details are omitted for brevity; interested readers are
prompt to the computational statistics book of Givens and Hoeting (2012,
Section 2.2.1) and the online book of Peng (2022, Section 2.4.3) The
uniroot function can be used to implement the method in R. Nevertheless,
it can identify only one root inside a given interval. The uniroot.all function
expands the uniroot function and can identify multiple roots, when they
exist. This function is available in rootSolve package. A detailed
description of the Newton-Raphson algorithm and of how you can use
implement in R is available at https://rpubs.com/aaronsc32/newton-
raphson-method.

Another maximization algorithm which is popular in a specific class of
models in statistics is the Expectation-Maximization (EM) method. This
method is appropriate when some auxiliary or latent data/variables are a key
component of the model being estimated. In other situations, a model might
be rewritten in this format just to simplify computations and enable the use

https://rpubs.com/aaronsc32/newton-raphson-method


of this computational algorithm (similar approaches are also employed in
the implementation of Markov Chain Monte Carlo methods for Bayesian
inference). The extra data or random variables in these cases are referred to
as auxiliary because they are nonsense for the model interpretation and they
are only introduced in the model to make computations easier. Within this
framework, these auxiliary or latent variables/data are also called missing
variables/data. EM can be implemented in factor analysis and latent
variable models, in random effects and mixed models, in cluster analysis
and mixture models.

The EM algorithm is an iterative algorithm. algorithm The method was
originally introduced by Dempster et al. (1977) and it is popular due to its
simplicity. The method comprises by two simple steps: E-step and the M-
step. In the E-step, we estimate the latent/auxiliary data by calculating their
expectations, whereas in the M-step we maximize the model parameters
given that latent/auxiliary data are equal to their expected values found in
the E-step.

In the general approach, the EM algorithm will be useful when the model
sampling distribution f(y|θ) is difficult to be handled computationally (or
it is even unavailable in closed form) and the corresponding likelihood can
be easily maximized. In order to work with the EM algorithm we need to
identify auxiliary variables Z where we can re-write the model's sampling
distribution as the marginal distribution when you ignore (or integrate out) 
Z. Therefore, we need to be able to re-write f(y|θ) in the following way

f(y|θ) = ∫ f(y, Z|θ)dZ = ∫ f(y|Z, θ)f(Z|θ)dZ.



In the E-step, we calculate the expectation of the log-likelihood using the
full data (observed and missing/auxiliary) given the observed ones. Hence,
we calculate

and then we maximize μ(θ) with respect to θ. The algorithm is repeated
until θ and μ(θ) stabilize and there are minor changes between iterations.

Other methods also exist, especially in machine learning literature where
the target function is extremely complicated; see for example reinforcement
algorithms for machine learning methods.

2.4 Illustration: Fitting the double Poisson model with MLE
approach

In this section we are going to use the data from the matches of the English
Premier League 2006–2007 season. This dataset will serve as an example
for modelling football match data using the double Poisson model (see Eq.
2.2 and 2.3) using the MLE approach. The analysis employs a simple
vanilla model, which assumes a Poisson distribution for goals scored by
each team. This dataset, accessible through the engsoccerdata package in
R, provides match results and team performance data in a structured format.
This approach highlights how basic statistical models can provide insights
into team performance while remaining interpretable and straightforward to
implement.

Before fitting the model, the dataset requires transformation (as described
in Section 2.2.2) to meet the requirements of a Poisson generalized linear

μ(θ) = E[log f(y|Z, θ) y, θ] = ∫ [log f(y, Z|θ)]f(Z|y, θ)dZ,∣



model (GLM). Each match is represented as two rows in the dataset, one for
each team, with the response variable indicating the number of goals scored
(“goals1” and “goals2”). This format ensures that the model accounts for
both home and away performances, enabling the inclusion of predictors
such as a home-team indicator, which captures the advantage typically
associated with playing on home ground. This transformation not only
aligns with the structure required for GLMs but also enhances the model's
ability to assess critical factors influencing match outcomes, such as home
advantage. Code-Snippet 1 provides the R code for preparation of the data,
while R Outputs 1 and 2 display samples of the original dataset and the
transformed dataset, respectively. The transformed dataset is now ready for
use with the glm function in R.

Code Snippet 1 Data transformation for use with the glm function in R ⏎

n<-nrow(chap07_ex2_soccer)

all(levels(chap07_ex2_soccer$ht)==levels(chap07_ex2_soccer$a

t))

goals <-c(chap07_ex2_soccer$goals1,chap07_ex2_soccer$goals2)

game <- c(1:n, 1:n )

home <- c( rep(1,n), rep(0,n) )

att <- factor(c(chap07_ex2_soccer$ht, chap07_ex2_soccer$at) 

)

def <- factor(c(chap07_ex2_soccer$at, chap07_ex2_soccer$ht))

levels(att) <- levels(chap07_ex2_soccer$ht)

 

premier <- data.frame( game=game, att=att, def=def, 

home=home, goals=goals)



head(premier)

i<-order(game)

premier<-premier[i,]

head(premier)

Long Description for Output 1

Output 1:  Dataset before transformation (one row per match).⏎

Long Description for Output 2

Output 2:  Final dataset for use with the glm function in R (two rows per
match).⏎

Once the dataset is structured, the model is fitted in R using the glm
function. This process involves specifying the Poisson family, which is
suitable for count data like goals. The simplicity of the vanilla model allows



for quick computation and easy interpretation of results, making it a
practical choice for analyzing sports data. For instance, the coefficients of
the model can help quantify the home advantage or identify teams with
particularly strong offensive or defensive performances.

Code-Snippet 2 provides the details about fitting the double Poisson
model using the glm function in R after imposing the sum-to-zero
constraints on the team attacking and defensive parameters/abilities. The
resulted model coefficients (constant, home effect, attacking and defensive
abilities) are presented in R–Output 3.

Code Snippet 2 Fitting the double Poisson model using the glm function.

# Setting the sum-to-zero constraints for attacking 

parameters

contrasts(premier$att)<-contr.sum(20)

# Setting the sum-to-zero constraints for defensive 

parameters

contrasts(premier$def)<-contr.sum(20)

# Fitting the Double Poisson model

model <- glm( goals~home+att+def, family=poisson, 

data=premier )

# Summarizing the Double Poisson model

summary(model)

# Double Poisson model coefficients

round(summary(model)$coef,3)





Long Description for Output 3

Output 3:  Double Poisson estimated parameters using the glm function in
R.

As you may notice, on both attacking and defensive coefficients the
parameter corresponding to the 20th team is missing due to the imposed
constraints. We may restructure these parameters and add the missing
parameter using the R syntax of Code-Snippet 3 resulting in the more
structured table presented in R–Output 4.

Code Snippet 3 Code for restructuring attacking and defensive
parameters. ⏎

abilities <- matrix( nrow=20,ncol=4 )

abilities[1:19,1:2] <- summary(model)$coef[2+1:19,1:2]

abilities[1:19,2:3] <- summary(model)$coef[21+1:19,1:2]

# Calculation of the abilities for the 20th team

abilities[20,1] <- -sum(summary(model)$coef[2+1:19,1])

abilities[20,3] <- -sum(summary(model)$coef[21+1:19,1])

 

# Adding team names

rownames(abilities)<-levels(premier$att)

# Adding column description

colnames(abilities)<-c( "Att", "SD-Att", "Def", "SD-Def" )

abilities



Long Description for Output 4

Output 4:  Attacking and defensive parameters.⏎

From the table of R–Output 4, we can see, for example, that Manchester
United had the highest attacking ability equal to 0.597 which means that it



is expected to score 81.7% number of goals than an average team playing
against the same opponent1. Postmouth attacking ability is exactly equal to
zero which means that it is an average team in terms of scoring. Manchester
city is the worst with coefficient equal to −0.438 which means that it is
expected to score 35% lower number of goals than an average team against
the same opponent. Wigan (the team whose abilities were omitted in the
original glm output) has negative coefficient which means that its scoring
ability is less than average (by 16%).

_________________

 1This is calculated by considering 100 × (e0.597 − 1).



2.5 Methods of estimation Part II: A short introduction to
model-based Bayesian inference

Bayesian theory adopts a different approach from classical statistical theory
in dealing with unknown parameters. In Bayesian theory, any unknown
parameter is treated as a random variable and, therefore, it requires a prior
distribution that reflects the prior knowledge or beliefs about the parameter.
Therefore, interest lies in calculating the posterior distribution of the
unknown parameters which incorporate both prior f(θ) and data
information which is expressed by the likelihood f(y|θ). Then, using a
modern version of the Bayes theorem, the posterior distribution of the
model parameters θ is given by

(2.5)

Equation (2.5) turns the prior information into posterior via the use of data
and the model likelihood.

The posterior distribution can be summarized by its moments or other
summary statistics such as the posterior mean, the median, the quantiles, or
the standard deviation, and so on. These measures can be used for inference
concerning the parameter of interest.

When no prior information is available, one can use a variety of non-
informative vague priors; see for examples of non-informative priors in
Kass and Wasserman (1995) and Yang and Berger (1996).

However, in many occasions, the posterior distribution may not have a
closed-form expression. A common way to overcome this difficulty is to

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)
∫ f(y|θ)f(θ)dθ

∝ f(y|θ)f(θ).



use conjugate prior distributions. Such priors have the property that the
resulting posterior distribution belongs to the same family of the prior
distribution. Bernardo and Smith (2000) provide a comprehensive overview
of conjugate priors. Alternatively, one can use asymptotic approximations,
such as the Laplace approximation (see, for example, in Erkanli, 1994;
Tierney and Kadane, 1986; Tierney et al., 1989), or numerical integration
techniques (see, for example, in Evans and Swartz, 1996).

With the change of the century and the rapid advancement of computing
power, Markov Chain Monte Carlo (MCMC) techniques have become quite
popular and now they are considered as a standard computational tool for
medium sized statistical models. These techniques generate samples from
the posterior distribution, allowing for the accurate estimation of the
posterior densities and the implementation of complex models for real life
problems. We briefly describe these methodologies in Section 2.5.1 which
follows.

2.5.1 Markov Chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are powerful algorithms that
emerged in the statistical science in the 1990s and facilitated the widespread
implementation of Bayesian data analysis after 2000s. The main reason for
the popularity of these algorithms is their ability to estimate (indirectly)
high dimensional integrals involved in the Bayesian computation of
statistical models describing common real life problems. This has enabled
the application of sophisticated models in many practical domains.

MCMC methods were first introduced by Metropolis et al. (1953), but
they became widely used in statistical science after the works of Gelfand
and Smith (1990) and Gelfand et al. (1990); see in Gilks et al. (1996) for a
comprehensive overview of MCMC methods and their application in a



variety of applications. The WinBUGS software and its descendants
(OpenBUGS, MultiBUGS, Jags, NIMBLE, Stan), originally developed by
Professor Spiegelhalter and presented in Spiegelhalter et al. (1996), offer an
easy-to-use platform for applying Bayesian models via MCMC.

A Markov chain is a stochastic process {θ(1), θ(2), ⋯ , θ(t)} such that 
f(θ(t+1)|θ(t), ⋯ , θ(1)) = f(θ(t+1)|θ(t)). That is, the distribution of θ in
time t + 1 given all the preceding θ (for times t,  t − 1,   … ,  1) depends
only on θ(t). Moreover, f(θ(t+1)|θ(t)) is independent of time t. When the
Markov chain is irreducible, aperiodic and positive recurrent, as t → ∞ the
distribution of θ(t) tends to its equilibrium distribution which is independent
of the initial θ(0); for details see Gilks et al. (1996).

In order to generate a sample from f(θ|y) we must construct a Markov
chain with two desired properties. First, f(θ(t+1)|θ(t)) should be “easy to
generate from” and, second, the equilibrium distribution of the selected
Markov chain should be our target posterior distribution f(θ|y).

We construct a Markov chain with the above requirements, then we select
an initial value θ(0) and generate values until the equilibrium distribution is
reached. The next step is to cut off the first B observations as a burn-in
period in order to eliminate any possible effect of the initial values θ(0). The
final sample of T (generated) observations will be 
{θ(B+1), θ(B+2), ⋯ , θ(B+T )}. Convergence of the MCMC can be checked
by various methods; for details see (Cowles and Carlin, 1996) and Brooks
and Roberts (1998). CODA (Plummer et al., 2006) and BOA (Smith, 2007)
R packages can be used to apply certain diagnostic tests in order to check
the convergence of the MCMC algorithm for a given generated sample.

Two are the most popular MCMC methods: Metropolis Hastings
(Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman
and Geman, 1984a).



2.5.1.1 The Metropolis-Hastings algorithm

In Metropolis-Hastings algorithm we follow iteratively three steps:

1. Generate θ′ from a proposal distribution q(θ|θ(t)).

2. Calculate

3. Update θ(t+1) = θ′ with probability α, otherwise set θ(t+1) = θ(t).

A common choice for the proposal is to consider a normal distribution
centred in the parameter value of the previous iteration, that is 
q(θ′|θ(t)) = fN(θ′; θ, Σθ); where fN(x; μ, Σθ) is the probability density
function of the multivariate normal distribution with mean μ and variance-
covariance matrix Σθ evaluated at x. This simplifies the acceptance
probability of Step 2 in the following expression

The covariance matrix Σθ is a tuning parameter of the MCMC algorithm
and controls the convergence speed of the algorithm. algorithm

Another standard choice is the independence sampler where the proposal
distribution does not depend on the current state θ(t) of the chain, while the
most frequent implementation is the single component Metropolis-Hastings
where only one parameter is updated in each iteration.

α =min (1,
f(y|θ′)f(θ′)q(θ(t)|θ′)

f(y|θ)f(θ)q(θ′|θ(t))
).

α =min (1,
f(y|θ′)f(θ′)
f(f(y|θ)f(θ)

).



2.5.1.2 Gibbs sampler

Geman and Geman (1984a) introduced the Gibbs sampler. Using the
matching conditional posterior, we update one component in each step of
this algorithm. algorithm For a given state of the chain θ(t), the steps of the
algorithm are as follows:

where p is the number of components of the parameter vector θ. The
generation from f(θj|θ∖j, y) = f(θj|θ

(t+1)
1 , ⋯ , θ(t+1)

j−1 , θ(t)
j+1, ⋯ , θ(t)

p , y) is
relatively easy since it is a univariate distribution and can be written as 
f(θj|θ∖j, y) ∝ f(θ|y) where all the variables except θj are held constant at
their given values.

If in the Metropolis-Hastings algorithm we consider the full conditional
posterior distribution f(θj|θ∖j, y) as the proposal density q(θ′|θ(t)), then
we always accept the proposed move (with probability equal to one). This
makes the Gibbs sampler to be a special case of the single component
Metropolis-Hastings algorithm. algorithm The Gibbs sampler was used in a
variety of applications in several fields. The development of WinBUGS
(Lunn et al., 2000) also helped towards this direction.

2.5.1.3 Hamiltonian Monte Carlo

Generate θ(t+1)
1 fromf(θ1|θ(t)

2 , θ(t)
3 , ⋯ , θ(t)

p , y),

Generate θ(t+1)
2 fromf(θ2|θ(t+1)

1 , θ(t)
3 , ⋯ , θ(t)

p , y),

Generate θ(t+1)
3 fromf(θ3|θ(t+1)

1 , θ(t+1)
2 , ⋯ , θ(t)

p , y),

⋮  ⋮  ⋮ ⋮      ⋮      ⋮      ⋮      ⋮      ⋮

Generate θ(t+1)
p fromf(θp|θ(t+1)

1 , θ(t+1)
2 , ⋯ , θ(t+1)

p−1 , y),



Hamiltonian Monte Carlo (HMC) (Betancourt and Girolami, 2015a) is an
MCMC technique for sampling from complex probability distributions
using concepts from physics. Through the derivatives of the target posterior
distribution, it produces effective transitions over the whole space of the
posterior of interest; for more details we refer to Betancourt and Girolami
(2015b). By utilizing the density function derivatives, HMC can suggest
distant moves that are more likely to be accepted, reducing by this way the
correlation between subsequent samples and increasing the efficiency of the
sampling process. Being a specific type of an MCMC technique, HMC
produces a series of random samples that converge to the target distribution.
HMC is extremely useful when sampling from high-dimensional and
multimodal distributions, such those found in Bayesian inference problems.
In a nutshell, HMC uses an approximate Hamiltonian dynamics simulation
scheme based on numerical integration which is then corrected by
performing a Metropolis acceptance step.

The primary rationale behind using HMC instead of conventional
MCMC it the fact that HMC has the advantage that it can escape from
regions of local maxima more easily. HMC is generally more efficient than
standard MCMC methods, as it produces samples with lower auto-
correlation and converges faster to the target posterior distribution. HMC
can provide more effective moves that can travel through the space more
successfully by taking advantage of the structure and the geometry of the
target distribution.

Nevertheless, HMC has certain limitations and disadvantages. The most
important is that the target distribution needs to be differentiable. This
makes the method inappropriate for sampling from posterior distributions of
discrete parameters. Another drawback is that HMC is prone to instabilities,
which can lead to the algorithm diverging or producing inaccurate samples.



Therefore, HMC must be carefully implemented and monitored in order to
obtain accurate samples from the posterior distribution of interest.

The General algorithm

Although, HMC is much more complicated than standard MCMC methods
described in Sections 2.5.1.1 and 2.5.1.2, we will try to describe the main
steps of the algorithm as simple as possible. The HMC is summarized by
the following steps

Step 1: Introduction of an auxiliary momentum variable and generation
of it

Step 2: Setting up the Hamiltonian, and solve the induced differential
equation using the Leapfrog Integrator

Step 3: Metropolis accept step

So let us assume that we wish to generate samples from the posterior
distribution f(θ|y). Then in Step 1, we introduce a set of auxiliary
momentum variables ρ and we sample from the joint posterior

A simplified version is to assume that ρ and θ are independent and use a
multivariate normal distribution for the momentum variable.

Next, in Step 2, the joint density f(ρ, θ|y) defines a Hamiltonian by
setting

f(ρ, θ|y) = f(ρ|θ, y)f(θ|y).

H(ρ, θ) = − log f(ρ, θ|y) = − log f(ρ|θ, y) − log f(θ|y).



The first term T (ρ|θ) = − log f(ρ|θ, y) is called the kinetic energy while
the second one is the potential energy and it is often denoted by V (θ)). So
in this step we first generate ρ from f(ρ|θ, y) and then we update a set of
values (trajectory) denoted by ρt and θt (for t = 0, 1, … ,n) by the
Hamiltonian's differential equations

(2.6)

The above system of equations describes a deterministic motion or
trajectory. In this trajectory, we start at point ρ0 and it is defined for any 
t ≥ 0.

The differential equation system (2.6) is then solved using the leapfrog
integrator which is a numerical integration algorithm. The algorithm
requires to specify the of leap frog steps L and the step size ε > 0 being a
small positive number.

Suppose the chain at the current MCMC step/iteration t is at state 
(θ(t), ρ(t)). We consider a sequence of values (θℓε, ρℓε) for ℓ = 0, 1, … ,L

with θ0 = θ(t) and ρ0 = ρ(t). For any given (θℓε, ρℓε), the next values 
(θℓε+ε, ρℓε+ε) in the sequence, are given by

dθt

dt
= −

1
f(ρt|θt, y)

∂f(ρt|θt, y)
∂ρt

,

dρt

dt
= +

1
f(ρt|θt, y)

∂f(ρt|θt, y)
∂θt

+
1

f(θt|y)
∂f(θt|y)

∂θt
.



At the end we set (ρ∗, θ∗) = (ρLε, θLε). These values, obtained at the end
of the leapfrog integrator, are, then, used as a proposal value in the
Metropolis of Step 3. Thus, in Step 3, we accept the proposed move 
(ρ∗, θ∗) with probability

A Simplified Version of HMC

A simplified and popular version of HMC is to assume that ρ and θ are
independent and use a multivariate normal distribution for the momentum
variable. Hence, we set f(ρ|θ, y) ∝ exp (− 1

2 ρTΣ−1
ρ ρ) and, in Step 1 of

HMC algorithm, we generate ρ ∼ Ndρ(0, Σρ), where dρ is the dimension
of ρ. The variance-covariance matrix can be the identity matrix or can be
estimated from a pilot run or from the burn-in period of HMC. Hence, the
algorithm for this special case of HMC can be summarized by the following
simplified algorithm

The algorithm is summarized as follows.

Step 1: Generate ρ from Ndρ(0, Σρ).

ρℓε+ ε
2

= ρℓε +
ε

2
∂ log f(θ = θℓε|y)

∂θ
,

θℓε+ε = θℓε − ε
∂ log f(ρ = ρℓε+ ε

2
|θ = θℓε, y)

∂ρ
,

ρℓε+ε = ρℓε+ ε
2

+
ε

2
∂ log f(θ = θℓε+ε|y)

∂θ
.

α =min (1, e−H(ρ∗,θ∗)+H(ρ,θ)) =min (1,
f(ρ∗|θ∗, y)f(θ∗|y)
f(ρ|θ, y)f(θ|y)

).



Step 2: Generate a set of proposed values (ρ∗, θ∗) = (ρLε, θLε) by
creating a sequence of values (θℓε, ρℓε) for ℓ = 0, 1, … ,L with 
θ0 = θ(t) and ρ0 = ρ(t). For any given (θℓε, ρℓε), the next values 
(θℓε+ε, ρℓε+ε) in the sequence, are given by

Step 3: Implement a Metropolis-Hastings step using (ρ∗, θ∗) as the new
proposed values. Thus, we accept the proposed move (ρ∗, θ∗) with
probability

2.5.2 Tools for fitting Bayesian models

WinBUGS/OpenBUGS and its descendants

WinBUGS is standalone software which implements MCMC methods for
Bayesian inference. It is the descendant of BUGS (Bayesian inference
Using Gibbs Sampling) project which started in 1989 by Professor David
Spiegelhalter and his team. The whole project was originally based in MRC
Biostatistics Unit, Cambridge, and, later, was also supported by Imperial
College School of Medicine at St Mary's in London2. Although the original
BUGS software was running in Linux and DOS operating system,

ρℓε+ ε
2

= ρℓε +
ε

2
∂ log f(θ = θℓε|y)

∂θ
,

θℓε+ε = θℓε − ερℓε+ ε
2

ρℓε+ε = ρℓε+ ε
2

+
ε

2
∂ log f(θ = θℓε+ε|y)

∂θ
.

α =min (1,
f(θ∗|y)
f(θ|y)

× × exp(−
1
2

ρ∗T
Σ

−1
ρ ρ∗ +

1
2

ρT
Σ

−1
ρ ρ)).



WinBUGS was the first implementation of BUGS in windows OS and its
first version was available on the web on 1997 (Lunn et al., 2000).
WinBUGS has more than 30,000 downloads. The program can be run via R
using the package R2WinBUGS. The maintenance and support of
WinBUGS was officially terminated on February 2019 and the project was
continued by its descendants: OpenBUGS, MultiBUGS, JAGS and
Nimble3.

Although nowadays Stan is considered the standard tool for
implementing Bayesian inference, the BUGS community is still strong with
many users finding easier to use the more “old fashioned” WinBUGS like
software.

_________________

 2https://www.mrc-bsu.cam.ac.uk/software/bugs/
3Links: https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/, https://www.multibugs.org/,

https://mcmc-jags.sourceforge.io/ and https://r-nimble.org/

Stan Software

The implementation of HMC via home-made code is challenging due to its
complexity and its various tuning parameters that need to be specified by
the user. A ready-to-use solution is offered by STAN software (Carpenter et
al., 2017), which is a probabilistic programming language similar to
WinBUGS and OpenBUGS which simulates values from the posterior
distribution using HMC. HMC can be easily run from R or Python.
Additionally, STAN offers optimization methods for (penalized) maximum
likelihood problems, and variational Bayes techniques for approximate
Bayesian inference for high-dimensional problems.

MCMCpack package in R

https://www.mrc-bsu.cam.ac.uk/software/bugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
https://www.multibugs.org/
https://mcmc-jags.sourceforge.io/
https://r-nimble.org/


R offers a great variety of packages than can implement Bayesian methods;
CRAN task view on Bayesian inference maintained by Park et al. (2023)
report more than 200 packages with 10 of them to be of general
implementation. Among them, the most popular one is the MCMCpack
(Martin et al., 2011), which offers a big variety of ready-to-use models and
general purposes functions where the user can specify his model
formulation. Although, it gained attention at the beginning having a popular
book to support it (Albert, 2009), MCMCpack never manages to reach the
popularity of WinBUGS.

pyMC package in Python

PyMC is the most popular MCMC package in Python. It further offers the
implementation variational Bayes algorithm. Since the authors of this book
are not Python fans, they cannot express a direct opinion about PyMC as an
alternative to the above R based tools.

2.6 Illustration (continued): Fitting the double Poisson model
with the Bayesian approach

Following the illustration in Section 2.4, we use the English Premier
League dataset of season 2006–2007 to fit the double Poisson model (see
Eqs. 2.2 and 2.3) using the Bayesian approach. We implement the model in
WinBUGS/OpenBUGS, though similar methods apply to other software,
such as STAN. For a more thorough Bayesian implementation of this
model, readers may refer to (Ntzoufras, 2009, Section 7.4.3, pp. 249–257,
which provides an in-depth discussion of the methodology and its
application in WinBUGS.



Long Description for Output 5

Output 5:  Dataset transformation of the original dataset of Output 1 to the
one (premier_winbugs) used for WinBUGS/OpenBUGS model.⏎

Note that when fitting the model in WinBUGS/OpenBUGS, there is no
need to transform the data into a univariate Poisson model, as described in
Section 2.2.2. Instead, the model can be specified directly using the



approach in Eqs. 2.2 and 2.3. Thus, each game can be represented in a
single row with four columns: the home team (HTi) and away team (ATi),
each identified by a code number, and the final score (home and away
goals, denoted as goals1 and goals2). The data are presented in R–Output
5.

Under this representation, the model can be re-expressed as

where n is the number of games, μ is a constant parameter; home is the
home effect; HTi and ATi are the home and away teams, respectively,
competing in the ith game; ak and dk are the attacking and defensive
effects–abilities of k team for k = 1, 2, … ,K; and K is the number of
teams in the dataset under consideration (here K = 20). Hence, the above
likelihood part can be specified in WinBUGS using the following code

for (i in 1:n){

# stochastic component

goals1[i] ~ dpois( lambda1[i] )

goals2[i] ~ dpois( lambda2[i] )

# linear predictor

log(lambda1[i]) <- mu + home + a[ ht[i] ] + d[ at[i] ]

log(lambda2[i]) <- mu        + a[ at[i] ] + d[ ht[i] ]

}

Goalsik ∼ Poisson(λik)  for  k = 1, 2
log(λi1) = μ + home + aHTi

+ dATi

log(λi2) = μ + aATi
+ dHTi

   for  i = 1, 2, … ,n,



For the attacking and defensive parameters (ak and dk), we impose sum-
to-zero constraints to ensure model identifiability and facilitate comparisons
of each team's abilities relative to an overall attacking and defensive level.
Specifically, we set

(2.7)

Under this parametrization, all parameters have clear interpretation. The
parameter μ represents the overall log-expected goals scored in away
games, while home quantifies the home advantage as the difference in log-
expected goals when two equally strong teams compete. The attacking and
defensive parameters, ak and dk, measure deviations from the league's
average attacking and defensive strength levels.

A positive attacking parameter (ak > 0) indicates that the team performs
better offensively than an average team in the league, while a negative
defensive parameter (dk < 0) indicates stronger defensive performance
compared to an average league team.

To impose (2.7) in WinBUGS, we set the ability parameters for one team
(e.g., k = 1) as:

This is implemented in WinBUGS syntax as:

K

∑
k=1

ak = 0  and  
K

∑
k=1

dk = 0.

a1 = −
K

∑
k=2

ak and d1 = −
K

∑
k=2

dk.



a[1] <- -sum( a[2:K] )

d[1] <- -sum( d[2:K] )

Prior distributions must be defined for the remaining parameters: μ, home
and ak, dk for k = 2, … ,K. The usual normal low-information prior with
zero mean and large prior variance are used here (with prior precision equal
to 10−4). This is specified in WinBUGS using the following syntax

# prior distributions

mu~dnorm(0,0.001)

home~dnorm(0,0.001)

for (i in 2:K){

a[i]~dnorm(0,0.01)

d[i]~dnorm(0,0.01)

}

The full WinBUGS code is given in Figure 2.1 while the final data
structure for direct use from WinBUGS and the initial values are given in
Figure 2.2



Long Description for Figure 2.1

FIGURE 2.1
WinBUGS Syntax for the full double Poisson model.⏎



Long Description for Figure 2.2

FIGURE 2.2
Initial values and data specification in WinBUGS/OpenBUGS model.⏎

Note, that we can run this model directly with the R environment using
either R2WinBUGS or the R2OpenBUGS R packages.

2.6.1 Results

Posterior summaries of the Double Poisson model parameters are presented
in Table 2.3. Figures 2.3 and 2.4 illustrate the posterior credible intervals for
the attacking and defensive parameters of each team. According to the
estimated model parameters, Manchester United had the highest attacking
strength, while Chelsea had the lowest (i.e., strongest) defensive parameter.
For a match between two average teams, the expected number of goals is



1.32 for the home team and 0.90 for the away team, implying a 46%
increase in scoring rate when playing at home.

TABLE 2.3
Posterior summaries of model parameters for the Double Poisson model⏎

Posterior
percentiles

Teama Node Mean SD 2.5% 97.5% Node Me
1. Arsenal a[1] 0.33 0.12 0.08 0.57 d[1] –0

2. Aston Villa a[2] –0.05 0.15 –
0.34

0.23 d[2] –0

3. Blackburn a[3] 0.16 0.14 –
0.13

0.42 d[3] 0.

4. Bolton a[4] 0.06 0.14 –
0.23

0.32 d[4] 0.

5. Charlton a[5] –0.26 0.16 –
0.61

0.04 d[5] 0.

6. Chelsea a[6] 0.33 0.12 0.08 0.56 d[6] –0

7. Everton a[7] 0.14 0.14 –
0.13

0.41 d[7] –0

8. Fulham a[8] –0.14 0.16 –
0.47

0.16 d[8] 0.

9. Liverpool a[9] 0.22 0.13 –
0.04

0.47 d[9] –0



Posterior
percentiles

Teama Node Mean SD 2.5% 97.5% Node Me
10. Man City a[10] –0.44 0.18 –

0.82
–0.09 d[10] –0

11. Man Utd a[11] 0.60 0.11 0.38 0.81 d[11] –0

12. Middlesbrough a[12] –0.02 0.15 –
0.33

0.26 d[12] 0.

13. Newcastle a[13] –0.16 0.16 –
0.48

0.13 d[13] 0.

14. Portsmouth a[14] 0.00 0.15 –
0.29

0.29 d[14] –0

15. Reading a[15] 0.15 0.14 –
0.13

0.40 d[15] 0.

16. Sheff Utd a[16] –0.33 0.17 –
0.68

–0.01 d[16] 0.

17. Tottenham a[17] 0.26 0.13 –
0.00

0.51 d[17] 0.

18. Watford a[18] –0.42 0.18 –
0.78

–0.07 d[18] 0.

19. West Ham a[19] –0.24 0.16 –
0.56

0.07 d[19] 0.

20. Wigan a[20] –0.19 0.16 –
0.51

0.11 d[20] 0.

  home 0.38 0.07 0.25 0.51 μ –0



Abbreviations: Man, Manchester; Utd, United; Sheff, Sheffield; Ham, Hampshire.

Long Description for Figure 2.3

FIGURE 2.3
95% Posterior error bars of the attacking parameters.⏎



Long Description for Figure 2.4

FIGURE 2.4
95% Posterior error bars of the defensive parameters.⏎

Posterior summaries of the predicted scores are presented in Table 2.4.
For both games, the posterior means suggest that the estimated model
parameters are in agreement with the observed scores.



Long Description for Output 6

Output 6:  Introducing missing scores in the last two games of the dataset.⏎

TABLE 2.4
Posterior summaries of the expected scores for last two games of premier _
dataset of Output 5⏎



2.6.2 Prediction of future games.

In this section, we briefly demonstrate how to obtain predictions for two
upcoming games. This approach can be easily extended to additional games
using the same approach.

To implement this in WinBUGS, we replace the actual goals scored in the
last two games (Tottenham vs. Manchester City and Watford vs. Newcastle)
with NA; see Output 6. WinBUGS then automatically generates values for
the missing goals based on the predictive distribution and provides
estimates for each score by monitoring the response variables goals1 and
goals2.

Another key quantity of interest is the probability of each match outcome
(win/draw/loss), which can be easily handled in WinBUGS using the syntax
in Code Snippet 4. In this syntax, the elements of outcome are binary

Actual
score

Posterior

Posterio
summaries o

differenc
Home
team Away team Median Mean Mean SD

Actual
score

Posterior

Posterio
summaries o

differenc
Home
team Away team Median Mean Mean SD

379. Tottenham Manchester
City

2–1 1–1 1.65
–

0.72

0.93 1.59

380. Watford Newcastle 1–1 1–1 0.93
–

1.02

-0.09 1.43



indicators representing, respectively, a win, draw, or loss for the home team
in each column.

Code Snippet 4 WinBUGS syntax for the calculation outcome
(win/draw/loss) probabilities of a game

# calculation of the predicted differences

pred.diff[1] <- goals1[379]-goals2[379]

pred.diff[2] <- goals1[380]-goals2[380]

#

# probability of each game outcome (win/draw/loss)

for (i in 1:2){

outcome[i,1] <- 1 - step( -pred.diff[i] )   #home wins 

(diff>0)

outcome[i,2] <- equals( pred.diff[i] , 0.0 )#draw (diff=0)

outcome[i,3] <- 1-step( pred.diff[i] )     #home loses 

(diff<0)

}

Using similar syntax (see Code Snippet 5) we can also estimate the
probabilities of the expected differences. In this syntax pred.diff.counts
is a vector of binary random values indicating which difference appears in
each MCMC iteration. Elements 2–12 denote differences from –5 to 5,
while the first and the last elements of the vector denote differences lower
than –5 and higher than 5, respectively.

Code Snippet 5 WinBUGS syntax for the calculation of the goal difference
of a game ⏎



# calculation of the probability of each difference

for (i in 1:2){

 pred.diff.counts[i,1]<- 1-step(pred.diff[i]+5) # less than 

-5

 # equal to k-7 (-5 to 5)

 for (k in 2:12){

  pred.diff.counts[i,k]<-equals(pred.diff[i],k-7)}

 pred.diff.counts[i,13]<-step(pred.diff[i]-6) # greater than 

5

}

Posterior probabilities of each predicted outcome and each value of the
goal difference are summarized in Tables 2.5 and 2.6. Outcome
probabilities indicate that Tottenham's probability of winning the game
against Manchester City was about 60%, with a posterior mode of one goal
difference. Concerning the second game (Watford vs. Newcastle), the
posterior model probabilities confirm that the two teams have about equal
probabilities of winning the game.

TABLE 2.5
Posterior probabilities of each game outcome for last two games of
premier _winbugs dataset of Output 5⏎

Posterior Probability
Actual Home Away

Home
team Away team score wins Draw wins



Posterior Probability
Actual Home Away

Home
team Away team score wins Draw wins

379. Tottenham Manchester
City

2–1 0.59 0.24 0.17

380. Watford Newcastle 1–1 0.33 0.30 0.37

aBoldface indicates the maximum probability and the corresponding
posterior mode of the difference.
Abbreviations: Man, Manchester.

2.7 Tools for fitting football models in R

Over the last years, many R packages have been developed for fitting
football models. One of the first attempts to provide ready-to-use code for
fitting the bivariate Poisson model of Karlis and Ntzoufras (2003) was the
bivpois package which is now available only in simple raw R code at

TABLE 2.6
Posterior probabilities of each game goal difference for the last two games 
5⏎

Home Away Actual Posterior Probabi
Team Team Score ≤ −3 –2 –1 0

379. Tottenham Man City 2–1 0.012 0.036 0.119 0.242
380. Watford Newcastle 1–1 0.042 0.108 0.218 0.303

https://calibre-pdf-anchor.a/#a399


http://www2.stat-athens.aueb.gr/~jbn/papers/paper14.htm. Also the code for
the Poisson difference model (Skellam) of Karlis and Ntzoufras (2009) can
be found at http://www2.stat-athens.aueb.gr/~jbn/papers/paper20.htm.
Finally, Ntzoufras (2009) has fitted the double Poisson model on Italian
Serie A data (see Example 7.2). Moreover, details (including code) for
various other related models (such as the negative binomial, the generalized
Poisson, the bivariate Poisson and Poisson difference or Skellam
distribution) that can be used for football data can be also found in the same
book; see Examples 8.3–8.5 and at the book's webpage4 for the relevant
WinBUGS code.

Currently there is a wide variety of R packages that are available for
analyzing football data starting from the footbayes package5 developed by
Prof. Leonardo Egidi (the first author of this book) and described in detail
in Chapters 4 and 5 of this book. footBayes consists of functions for fitting
widely known soccer models (double Poisson, bivariate Poisson, Skellam,
Student's t) through Hamiltonian Monte Carlo and Maximum Likelihood
estimation approaches using Stan. The package also provides tools for
visualizing team strengths and predicting match outcomes.

_________________

 4http://www.stat-athens.aueb.gr/~jbn/winbugs_book/home.html
5https://github.com/LeoEgidi/footBayes

Other packages that are currently active in CRAN can be found in
https://cran.r-project.org/web/views/SportsAnalytics.html. A
comprehensive list (updated on 22/1/2025) of football/soccer R packages is
the following

goalmodel R package: available at
https://github.com/opisthokonta/goalmodel. The goal model package is

http://www2.stat-athens.aueb.gr/~jbn/papers/paper14.htm
http://www2.stat-athens.aueb.gr/~jbn/papers/paper20.htm
http://www.stat-athens.aueb.gr/~jbn/winbugs_book/home.html
https://github.com/LeoEgidi/footBayes
https://cran.r-project.org/web/views/SportsAnalytics.html
https://github.com/opisthokonta/goalmodel


designed to fit models including the negative binomial, Conway-
Maxwell-Poisson model and the ones of Dixon and Coles (1997) and Rue
and Salvesen (2000) that predict the number of goals scored in sports
matches.

socceR which provides functions for evaluating soccer predictions and
simulating results from soccer matches and tournament.

ggsoccer which provides functions for visualizing soccer event data in
ggplot2.

regista R package implements the Dixon and Coles (1997) approach and
models for expected goals (xG) among others; available at
https://github.com/Torvaney/regista.

soccerAnimate: an R package to create 2D soccer animations; available
at https://www.datofutbol.cl/soccer-animate-r-package/

ffanalytics R package for Fantasy Football Data Analysis; available at
https://fantasyfootballanalytics.net/2016/06/ffanalytics-r-package-
fantasy-football-data-analysis.html.

Moreover, the following R packages provide a variety of football datasets:

bundesligR contains all final standings of the Bundesliga in Germany
from 1964 to 2016.

engsoccerdata: English and European Soccer Results 1871-2020;
available at https://github.com/jalapic/engsoccerdata

EUfootball provides European football match results for top leagues in
England, France, Germany, Italy, Spain, Netherlands, and Turkey from
2010-2011 to 2019-2020.

https://github.com/Torvaney/regista
https://www.datofutbol.cl/soccer-animate-r-package/
https://fantasyfootballanalytics.net/2016/06/ffanalytics-r-package-fantasy-football-data-analysis.html
https://github.com/jalapic/engsoccerdata


footballpenaltiesBL contains data and plotting functions for analyzing
penalty kicks in the German Men's Bundesliga from 1963-64 to 2016-17.

footballR: R package to obtain football (soccer) data from APIs;
available at https://github.com/dashee87/footballR.

FPLdata contains functions for retrieving player attributes on Fantasy
Premier League.

worldfootballR: An R Package to Extract World Football (Soccer) data
from Fbref.com and transfermarkt.com available at
https://github.com/JaseZiv/worldfootballR.

2.8 Basic model assumptions and model checking issues

In order to be able to use the double Poisson vanilla model, as described in
Sections 2.1.1 and 2.1.2, we need to make the assumptions of

1. Independence of the goals scored by the two opponents.

2. The variance is equal to the expected goals (there is no under or
over-dispersion).

3. There is no excess of draws in the data in comparison to the
predicted ones.

4. The team abilities are constant across the season/tournament.

Nevertheless, during the last 25 years, the development of football
analytics models and the related empirical studies have emerged a variety of
objections concerning the above assumptions or characteristics of the
standard double Poisson model. Hence, a modern football analytics modeler

https://github.com/dashee87/footballR
http://fbref.com/
http://transfermarkt.com/
https://github.com/JaseZiv/worldfootballR


needs to check in his dataset whether the above assumptions hold and, in
case that these assumptions are not effectively reflecting the characteristics
of a football league or competition, to extend appropriately the model and
embody the above characteristics in their predictive approach. Hence, the
main questions (associated to the above assumptions) that a modern football
analyst needs to asses are four:

1. Is there dependence or independence between the goals of two
opponents?

2. Is there over-dispersion (or under-dispersion) in the number of
goals scored?

3. Is there an excess of draws in the data in comparison to the model
predictions?

4. Are the team abilities dynamic? If covariates are used instead, do
we need to consider any dynamic effects?

2.8.1 Dependence in the number of goals

Naturally, the number of goals scored by the two opponents in a game
should be dependent. In practice, small (but significant) dependence has
been observed, as remarked in Karlis and Ntzoufras (2003) and McHale and
Scarf (2011b). A number of models has been introduced in the literature in
order to account for the plausible dependence between the goals scored by
each team. The first model in the literature dealing with the dependence
between the goals scored in a game is the bivariate Poisson model of Karlis
and Ntzoufras (2003). This was followed by the Skellam model (Karlis and
Ntzoufras, 2009) used for the difference which eliminates any linear
correlation between the goals scored by the two opponent teams in game.



These publications were followed by Koopman and Lit (2015, 2019a); Smit
et al. (2020).

Another way to deal with positive dependence of the game goals is to
consider the usual normal random effects (or Bayesian hierarchical model)
in order to account for specific type of association, as in Baio and
Blangiardo (2010). Nevertheless, such models do not seem to fit very well
the football data of several leagues.

Finally, copula models seems to be the promising alternative for
modelling complicated association structures in football. Nevertheless,
estimation of copula models for discrete models have several estimation
problems reported in the bibliography (Ötting and Karlis, 2023).

Empirically, slight correlation of the magnitude of 0.3 has been reported
in the literature but this seems to diminish over the last years; estimated
correlation using EUfootball package data is found to be slightly negative (
−0.08) for data for a period of ten years (2010-2020) and seven popular
leagues.

Finally, a theory for the observed small but significant correlation is that
the distribution of the corresponding estimator might be bimodal reflecting
two latent groups of games with (a) positive correlation (usually between
teams of similar strength), and (b) negative correlation (usually in game
with a clearly dominant team). Nevertheless, this theory has not been
checked or confirmed in practice.

2.8.2 Over-dispersion

There is a variety of publications reporting slight by significant over-
dispersion in the football analytics literature (Baxter and Stevenson, 1988;
Karlis and Ntzoufras, 2000b).



To account of this we can use the negative binomial model or the
generalized Poisson model (Ntzoufras, 2011, Section 8.3.2) and in Chapter
4 of this book.

Also, the usual normal random effects models (or the corresponding
Bayesian hierarchical models) may account for over-dispersion (Baio and
Blangiardo, 2010), (Ntzoufras, 2011, Section 9.3.1) although it seems that
such models are much worse than the negative binomial or the generalized
Poisson model.

On the other hand, under-dispersion is more rarely reported for football
data. Moreover, discrete distribution for handling under-dispersion are not
so common. The generalized Poisson, discussed above, can partially handle
under-dispersed data but it does not seem to have been used for football
data. Another distribution is the Poisson-COM (or Conway-Maxwell
Poisson) distribution which was proven promising in the implementation on
Premier League data (where some leagues with under-dispersed parameters
were identified). Another implementation of a variety of distributions
handling under-dispersion on several Premier league and Bundesliga
seasons was presented in http://opisthokonta.net/?p=1210. In this analysis,
five different distributions were used: the negative binomial, the Poisson-
COM, the double-Poisson (it should not be confused with the double
Poisson model used here), the Poisson-inverse Gaussian and the Delaporte
distributions. In all 10 leagues, the fitted models report under-dispersion but
in a vanilla type model without a constant parameter (which assumes an
expectation of one goal per game for the guest team).

2.8.3 Excess of draws

Usually goal-based models do not fit or predict very well the draws. In
practice we have an excess of draws in our data in comparison to the ones

http://opisthokonta.net/?p=1210


predicted from the goal/score-based models. This is more intense for the 0-
0 and 1-1 draws, which are two of the most frequent scores in football. An
easy remedy to overcome this problem is to include an additional draw
inflation component in our modelling formulation. Nevertheless, some
exceptions have been reported in the English Premier league where in some
seasons the goal-based models over-estimate the number of draws.

From the early years of statistical analysis of football data, Dixon and
Coles (1997) have foreseen the need to include extra parameters in order to
estimate accurately the probability of a draw. In their seminal publication,
they have considered an extra parameter in order to improve the fit of 0-0
and 1-1 draws which are two of the most frequent results in football. Their
approach was followed by Karlis and Ntzoufras (2003) who added a
diagonal inflated component in their bivariate Poisson model in order to
capture the excess of draws. Similarly, Karlis and Ntzoufras (2009) have
used a zero-inflated component in their Skellam based model for the score
difference.

After these publications, several authors have underlined the need of
extra model component in order to accurately estimated the probability of a
draw.

The problem actually arises from the fact that when teams are of equal
strength, then the expected number of goals should be identical while any
probability of a draw is reasonable. So in practice the probability of a draw
is not clearly identified. Nevertheless, when using specific distributions
such as the Poisson distribution, the probability of a draw is automatically
specified by the expected value (and other parameters); see for example
Figure 2.5 which depicts how the probability of the draw changes with
equal expected number of goals under the Poisson assumption.



Long Description for Figure 2.5

FIGURE 2.5
Probability of a draw for teams of equal scoring rate under the Poisson
distribution.⏎

As you can see from this figure, the probability of a draw is as high as
80% for teams with very low expected scoring ability and decreases around
to 20% for teams with expected number of goals equal to three (which is
quite high and unrealistic for most games). Although the principle that the
highest are the expected scoring abilities of the equal teams, the lower is the
probability of observing a draw seems to be reasonable, the rate of increase
does not seem to reflect the reality and some extra parameters are needed in
order to capture this important characteristic of football.



2.8.4 Dynamic abilities

Another important aspect of the vanilla models is the assumption of “fixed”
(or static) attacking and defensive team abilities. By fixed we mean that the
team abilities in model (2.3) of Section 2.1.2 are assumed to be constant
across time. Nevertheless, football fans intuitively believe that each team
has ups and downs in their performance which should be reflected in their
attacking and defensive abilities. Moreover, in most sports an underlying
psychological factor is assumed which creates the expectation that when a
team wins or over-performs (i.e. achieves a result which is better than what
was expected), then this causes a positive team mood which eventually
might lead to good performances and sequential successful results. This
time dependence of the abilities is usually modelled by introducing simple
random effects in the model formulation or by adapting a hierarchical
structure with the Bayesian framework. These random ability parameters
are usually assumed to have a random walk behaviour. Such time dependent
abilities are called in the bibliography dynamic team abilities (Owen, 2011;
Koopman and Lit, 2015) and they reflect the performance of the teams in a
more enhanced way than simple fixed ability models (Egidi et al., 2018b).

Concerning the formulation, the attacking and defensive abilities attk
and defk in (2.3) are substituted by attk,t and defk,t, respectively. The sub-
script t is introduced to the team parameters in order to denote the team
ability of the k-th team at game/week t; where t ∈ 2, … ,T  and 
T = 2K − 2. Moreover, the time dependent abilities are incorporated in the
model formulation through the equations:

attk,t ∼ N(attk,t−1,σ2
a) and defk,t ∼ N(defk,t−1,σ2

d).



Note that this is the simplest time dependence structure we may consider.
Although other dynamic structures can be considered, this is by far the most
popular approach to account for time-varying team performance. Overall,
the dynamic abilities model is by far more realistic than the fixed effects
model. Of course, this comes to a price. The dynamic model is more
computationally demanding in terms of fit. For this reason, many
researchers may consider to use the simpler fixed effects formulation in
order to obtain faster results, especially if evidence from model comparison
measures does not suggest important improvement of the fit (or the
prediction). In any occasion, a dynamic model might be valuable in terms
of interpretation of the team performance across the season(s).

2.9 How to compare and select models: Criteria, assumptions

In this section, we frequently summarise the possible alternatives for
comparing football analytics models. This is standard theory within
statistical methods and it is summarized here in order to have a complete
picture of standard and more modern ways of model comparison and
evaluation. In this section we focus on the main response (goals or
win/draw/loss), while in subsequent sections we also extend the approach to
other measures of interest like the number of points earned in the league or
the final predicted league ranking.

2.9.1 Goodness of fit and significance tests

The double Poisson models described in Sections 2.1.2 and 2.2.3 and the
corresponding multinomial models that can be used for the match outcome
fall in the class of generalized linear models (GLM) while the random



effects models described in Section 2.8.4 fall in the context of generalized
linear mixed models (GLMM). Hence, we may use the standard approaches
within this theory to check for certain hypotheses or assumptions. We refer
the reader to use the excellent books of Alan Agresti for GLMs and
categorical data (Agresti, 2013, 2015) as technical companions to this book;
especially for readers interested to go deeper in the relevant statistical
theory.

Within GLM framework we can use standard Wald t-tests (Wald, 1943)
and likelihood ratio tests χ2 significance tests using the model deviance
measures (Wilks, 1938) for assessing the significance of each added factor
and ability parameter.

Wald tests are readily available from the output of any statistical
software including the glm function in R. They are used to test the
hypothesis that a specific parameter βj of a GLM is equal to zero or not (see
model in Section 2.2.3 for our context) and hence if the corresponding
covariate should be included or not in the model. Hence it tests for the null
hypothesis H0 = βj = 0 vs. the alternative H1 = βj ≠ 0 using the simple
test statistic

which is assumed to follow asymptotically the normal distribution with
mean zero and variance equal to one, denoted as N(0, 1), and referred as
the standardized normal distribution; where β̂j is the maximum likelihood
estimator of a coefficient and se(β̂j) its corresponding standard error; all

Zβj
=

β̂j

se(β̂j)
,



these measures and the corresponding p-value are readily available in R in
the summary of the output of glm function.

Note that testing for differences between team abilities is not of major
interest in football modelling prediction. The main reason to consider such
an analysis is for interpretation purposes where a clustering of the teams in
terms of performance might be of interest. In the case we implement
multiple testing on defensive and attacking parameters, then it will be
reasonable to also apply multiple testing corrections.

Likelihood ratio tests (LRTs) comprise a more general framework for
comparing two nested models M0 ⊂ M1. A model M0 is nested to a model
M1 when we can obtain it by restricting a subset of parameters of M1 to
specific values. So if we assume that model M0 has parameters θ0 = ϑ0

and model M1 has parameters θ1 = (ϑ0, ϑ1), then the LRT will test for 
H0 : ϑ1 = 0 vs. H1 : ϑ1 ≠ 0 which can be interpreted that the two models
are identical in terms of fit (H0) vs. model M1 is better in terms of fit.

The LRT is based on the notion of the deviance of model M with
parameters θM which is given by the model maximized log-likelihood 
f(y|θM ,M) multiplied by the factor of minus two (−2). The model
deviance is given by

where f(yi|θ̂M ,M) is the probability density function of model distribution
adopted in our model formulation. For the Poisson-based model, the
sampling density is given by

DM = −2 log f(y|θ̂M ,M)  with   log f(y|θ̂M ,M) =
n

∑
i=1

log f(yi|θ̂M ,M)



while for the multinomial models is given by

where I (A) is the indicator function taking the value of one when A is true
and zero otherwise, yi is the final game outcome taking values 1, 2 or 3 for
win, draw and loss of the home team and pi,k are the corresponding
outcome probabilities. As you may understand, for a sequence of nested
models M0 ⊂ M1, … ,MK  the deviance measure is a decreasing function
of the model dimension. The more complicated the model is, the lower is
the deviance.

The LRT is based on the finding of Wilks (1938) that the deviance
difference D0 − D1 of two nested models M0 ⊂ M1, (with p0 and p1

parameters, respectively) asymptotically follows the χ2 with degrees of
freedoms equal to the difference of dimensions of the models under
comparison, p1 − p0.

Under this perspective, in the general GLM framework a standard model
to start with is the constant (or null model) where the same parameter is
used for all observations. Under this perspective, in the Poisson framework
for football data, it would correspond to consider a Poisson model with
parameter λ = Y = (Y 1 + Y 2)/2, i.e. the overall mean of goals scored by
both home and away teams. Since the home effect is well established and
acceptable in the football literature, we would suggest to consider different
parameters for home and away games given by the means Y 1 and Y 2 of the
goals of home and away teams. Moreover, in a second level comparison,

log f(yi|λi,M) = −λi + yi log(λi) − log(yi!)

log f(yi|pi,1, pi,2, pi,2,M) =
3

∑
k=1

I (yi = k) log pi,k,

–––

––



each new model should be compared with the standard vanilla model (see
Equation 2.3) since this model is well established in the literature as a well
behaved model which provides acceptable fit and prediction.

In terms of overall goodness of fit, a simple χ2 test can be used
comparing the fitted model with the “saturated” model. As “saturated”
model we define the model which has expected values equal to the
observed values, then, with as many parameters as observations. This
definition is problematic in our framework when using either the goals or
the final outcome as response. For the first case, some goals will be equal to
zero so a Poisson model with such a correlation will not be able to be fitted.
A simplified approach is for the cases where zero goals are observed to
consider as the mean of the Poisson an arbitrary small value λ0, say equal to
0.1. Nevertheless, all results will strongly depend on this value. A slightly
better alternative is to estimate this λ0 by using the mean of the fitted values
of the vanilla model for all cases with zero observations. All these
modifications do not ensure that the distribution of the deviance difference
will still follow a χ2 distribution, so using bootstrap is suggested to estimate
the induced significance.

The problem is more severe in the case of binomial or multinomial
modelling when we consider the game outcome (home win, draw or away
win) as response. In such cases, the test proposed by Hosmer and
Lemeshow (1980) for binary logistic regression can be used instead. The
logic of this test is simple and based on the formalization of g = 10 groups
based on the quantilies of the predicted probability of π. Then the sum of
the success probabilities for each group is an estimate of the expected
frequencies ek for each group k and this is compared with the corresponding
observed successes ok using a simple Pearson's χ2 test. Under this approach
the two competing hypotheses can be written as



H0: there is no difference between observed and expected
frequencies vs.
H1: there are differences between observed and expected frequencies
for each group k = 1, … , g.

Under this approach, the test statistic is given by

with

In the above equations, π̂i are the fitted success probabilities under the
assumed model; Qk is the interval (qk−1, qk] with qk denoting the k-th
quantile of π̂i and with q0 = 0 and qg = 1; fk and ek are the observed and
expected successes for observations with π̂i in the interval Qk = (qk−1, qk];
Nk are the corresponding number of observations in Qk. The above test
statistic XHL follows a χ2

g−2 distribution, with g − 2 degrees of freedom.
The test can be implemented using the R function hoslem available in the

XHL =
g

∑
k=1

(ok − ek)2

ek(1 − ek/Nk)

ok =
n

∑
i=1

I (π̂i ∈ Qk)yi

ek =
n

∑
i=1

I (π̂i ∈ Qk)π̂i

Nk =
n

∑
i=1

I (π̂i ∈ Qk).



package ResourceSelection. Alternatively, the package generalhoslem
offers a generalized version of the test; see function logitgof.

For our case, the generalization of Hosmer and Lemeshow test for
multinomial data (Fagerland et al., 2008) can be used instead. For the
football data, this will be modified to

with

where ok,c and ek,c are the observed and expected frequencies of the c
outcome. For the formation of the group intervals, the probability 
π̂i = 1 − π̂i1 is used, following the suggestion of Fagerland et al. (2008).
The generalized Hosmer and Lemeshow test statistic under the null
hypothesis follows the χ2 distribution with (g − 2) × (c − 1) degrees of
freedom – in our case df = 2g − 4. The generalized Hosmer and
Lemeshow test for multinomial data can be implemented via the R function
logitgof available in the package generalhoslem.

Before we close this section, we should state that this test is sensitive on
the choice of the number of groups g. Moreover, it fails to identify certain

XGHL =
g

∑
k=1

2

∑
c=1

(ok,c − ek,c)2

ek,c

ok,c =
n

∑
i=1

I (π̂i ∈ Qk)yi,c

ek,c =
n

∑
i=1

I (π̂i ∈ Qk)π̂i,c,



types of lack of fit since it refers to grouped data and marginal comparisons
in terms of fit (Hosmer et al., 1997).

2.9.2 Model comparison using information criteria

The use of information criteria in model choice was introduced in the early
seventies in order to find a consistent method for model selection. The most
popular criteria are Akaike's Information Criterion (AIC; Akaike, 1973),
and the Bayes Information Criterion (BIC; Schwarz, 1978). These criteria
have been widely used by all statisticians and modern machine learners
although both BIC and AIC have derived from Bayesian arguments.
Specifically, BIC is an approximation of the Bayes factor (see Section
2.9.4) used for Bayesian model comparison under specific conditions; see
for details in Schwarz (1978) and Kass and Wasserman (1995). On the other
hand AIC was derived as an approximately unbiased estimate of the
Kullback-Leibler discrepancy between the model under consideration and
the true model formulation (Akaike, 1973).

Generally, most information criteria suggest the selection of the model
which minimize a penalized deviance measure (or, roughly speaking, it is
based a penalized maximum log-likelihood measure) given by

(2.8)

where θm is the whole parameter vector, θ̂m are the corresponding
maximum likelihood estimates, and d(m) is the dimension of the parameter
vector θ(m).

ICm = −2 log(f(y|θ̂m,m))+ d(m)F ,



In linear regression models θT
m = [βT

(m),σ
2] and minimizing 

−2 log(f(y|θ̂m,m)) is equivalent to minimizing n log(RSSm). Also note

that F is the penalty imposed to the -2log-likelihood for each additional
parameter used in the model. Different penalty functions result in different
criteria; for example for F = 2 we have AIC and for F = log(n) we have
BIC.

If we want to compare two models M0 and M1 then we select the one that
has lower value of IC and therefore we define as IC01 the difference of the
two information criteria. Hence

(2.9)

Without loss of generality, we assume that d(M0) < d(M1). Note that if 
IC01 < 0 we select model M0 and if IC01 > 0 we select model M1. We can
generalize the above criterion difference by substituting the expression 
[d(M1) − d(M0)]F  by a more complicated penalty function ψ. In such case
we may write the information criteria in more general setup given by

where ψ is a penalty function depending on difference of the model
dimensions, d(M1) − d(M0), sample size n, and design matrices, X(M0)

and X(M1).

IC01 = −2 log( f(y|θ̂M0 ,M0)

f(y|θ̂M1 ,M1)
)− [d(M1) − d(M0)]F .

IC01 = −2 log(
f(y|θ̂M0 ,M0)

f(y|θ̂M1 ,M1)
)− ψ,



Shao (1997) divides model choice criteria in three major divisions:

1. Asymptotically valid criteria under the assumption that a true
model exists.

2. Asymptotically valid criteria under the assumption that not a fixed
dimension true model exists.

3. A compromise between these two categories.

The main conclusion of Shao (1997) was that ICm with F = 2 and 
F → ∞ when n → ∞ are two differently behaved categories of criteria
referred as AIC-like and BIC-like criteria. The BIC-like criteria perform
better if the true model has simple structure (“finite dimension”) while the
AIC-like criteria are better if the true model is a more complex one
(“infinite dimension”). The main argument of Zhang (1997) in favour of
BIC-like criteria is that the existence of a true model is doubtful and even if
exists we may prefer to select a simpler model that approximates
sufficiently the true one. In his words, “the practical advantage of a more
parsimonious model often overshadows concerns over the correctness of the
model. After all the goal of statistical analysis is to extract information
rather to identify the correct model.” In this direction, Rissanen (1986)
states that it is obvious that all selection criteria give rise to quantification
of the parsimony principle. They differ in the weight (or significance) that
they give to goodness of fit and model complexity. The goodness of fit is
measured by the log-likelihood ratio while model complexity by the
number of model parameters.

Another interesting perspective of AIC is that “leave-one-out” cross-
validation method is asymptotically equivalent to AIC and Cp, as noted by
Stone (1977) and Shao (1993).



2.9.3 Bayesian predictive measures

The criteria introduced in Section 2.9.2 serve as useful tools for model
comparisons in a classical statistical framework, however they are not well
suited for capturing models' uncertainty when framed in a Bayesian
perspective. In fact, none of the above method uses any form of parameters'
or model uncertainty to derive a final measure of predictive fit: the
predictive accuracy is somehow measured through the pointwise log-
likelihood evaluated in the maximum likelihood plugin estimate, by not
capturing any posterior uncertainty and using just a rough measure of
goodness of fit. Not only: in the criteria above, the bias correction uses the
“nomina” number of parameters, with the consequence of a possible over-
penalization in sparse or hierarchical models exhibiting a large amount of
shrinkage—think, for instance at the case where only a bunch of covariates
are statistical significant, with the majority of the parameters set at zero; or
when in a hierarchical models the group-parameters come from an
exchangeable prior distribution, which makes many of them a posteriori
overlapped and not distinguishable from the others. For such a reason, the
number of nominal parameters in the model could be far from being the
“true” number of parameters.

The criteria introduced in this section try to overcome these issues by:

Replacing the log-likelihood conditioned on the MLE with more relevant
Bayesian tools (WAIC and LOOIC);

Treating the number of parameters as a random variable and trying to
estimate the effective number of parameters through the uncertainty
arising from the posterior distribution (DIC and WAIC);

Actually considering the predictive distribution of future observable
outcomes (as in WAIC and LOOIC).



2.9.3.1 DIC

The Deviance Information Criterion (DIC) proposed by Spiegelhalter et al.
(2002) is a Bayesian version of AIC in Equation (2.8) and makes two
changes, by replacing the maximum likelihood estimate θ̂m with the
posterior mean θ̂m,Bayes and the number of parameters d(m) with a data-
based estimation of the effective number of parameters, ~

d(m), in such a
way that the criterion for model m is now:

(2.10)

There are two possible approaches to estimate the effective number of
parameters, where according to the first one this number is defined as:

(2.11)

where the expectation in the second term is the average of θ over its
posterior distribution. Technically, Equation (2.11) is computed using the
MCMC simulations from the posterior distribution as introduced in Section
2.5.1. Alternatively, the effective number of parameters could be defined as:

(2.12)

DICm = −2 log(f(y|θ̂m,Bayes,m))+ 2
~
d(m).

~
d(m) = log(f(y|θ̂m,Bayes,m)) − Epost(log(f(y|θm,m)),

~
d(m) = varpost(log(f(y|θm,m)),



where the variance is computed over the posterior distribution of the
parameter vector θm. Both the expression (2.11) and (2.12) provide the
correct answer in the limit of fixed model and large n; for linear models
with uniform prior distributions, both these quantities converge to the
number of parameters d(m). Note that, in practical contexts, 
1 ≤

~
dm ≤ d(m).

2.9.3.2 WAIC

Another recent and popular criterion is the Watanabe-Akaike Information
Criterion (WAIC) introduced by Watanabe and Opper (2010), a fully
Bayesian approach specifically designed to measure the out-of-sample
predictive accuracy. In order to fulfil this task, the criterion replaces the log-
likelihood in the previous criteria with the log-pointwise predictive density
for model m is

(2.13)

Similarly as in the DIC formulation, there is a correction consisting on the
effective number of parameters, estimated either as:

(2.14)

lppdm =
n

∑
i=1

log(∫ f(yi|θm,m)f(θm|yi)dθ).

~
d(m) =

n

∑
i=1

(log(Epost(f(yi|θm,m)) − Epost(log(f(yi|θm)))),



or by using the variance of individual terms in the log predictive density
and taking the sum over the n data points:

(2.15)

where this expression is similar to Equation (2.12), with the difference that
Equation (2.15) is more stable because it computes the he variance
separately for each data point and then sums. WAIC is then defined as

(2.16)

by using either Equation (2.14) or (2.15) as a bias correction. Similarly as
for Equations (2.11) and (2.12), the ~

d(m) in either Equation (2.14) or (2.15)
could be computed from simulations by replacing the expectations by
averages over the MCMC posterior draws.

As motivated by Gelman et al. (2014), compared to other information
criteria such as AIC and DIC, WAIC averages over the posterior
distribution rather than conditioning on a point estimate, such as the
maximum likelihood estimate or the posterior mean. This feature makes
WAIC appealing from a predictive perspective, since it evaluates the
posterior predictive predictions: AIC, BIC, and DIC estimate the predictive
performance by using a plugin density, but the Bayesian community would
still use the posterior predictive density for future observable outcomes, in

~
d(m) =

n

∑
i=1

varpost(log(f(yi|θ)),

WAICm = −2lppdm + 2
~
d(m),



place of some plugin surrogates. Moreover, WAIC is particularly relevant
for hierarchical and mixture models in which the number of parameters
increases with sample size and for which point estimates often are not
useful.

2.9.3.3 LOOIC

Another way to assess and compute predictive accuracy is based on leave-
one-out cross-validation (LOO) (Vehtari et al., 2017), a method for
estimating pointwise out-of-sample prediction accuracy from a fitted
Bayesian model using the log-likelihood evaluated at the posterior
simulations of the parameter values. When we perform Bayesian cross-
validation, we repeatedly partition the data into a training set and a holdout
set, and then the model is fit and the posterior distribution is obtained from
training data; this fit is then evaluated from a predictive perspective using
an estimate of the log predictive density of the holdout data,

where f(yi|y−i) is the leave-one-out predictive density given the data
without the i-th data point. The main difference with the lppd defined in
(2.13) for the WAIC in the previous section is that cross-validation uses
every time n − 1 data to fit the model and one residual holdout point to test
the predictive accuracy. To effectively compute lppdloo-cv one could use the
MCMC simulations from the posterior distribution, as explained by Gelman

(2.17)

lppdloo-cv,m =
n

∑
i=1

log(f(yi|y−i)) =
n

∑
i=1

log(∫ f(yi|θm,m)f(θm|y−i)dθ),



et al. (2014) and Vehtari et al. (2017). Moreover, to adequately evaluate the
posterior predictive distribution f(yi|y−i) when the n points are
conditionally independent in the data model, Vehtari et al. (2017) suggest to
use importance sampling ratios, especially the Pareto smoothed importance
sampling (PSIS) technique (Vehtari et al., 2015).

Analogously as for the other criteria, the LOOIC is then defined by
scaling a measure of predictive accuracy for the factor −2:

(2.18)

Note that in Equation (2.18) none bias correction applies: however, an
effective number of parameter estimation can be obtained under LOOIC as
well.

Analogously as with the other predictive information criteria such as
AIC, BIC, DIC and WAIC, the lower is the LOOIC, the better is the model
predictive accuracy. The rationale behind the use LOO or WAIC is to
estimate the accuracy of the predictive distribution by requiring data to be
divided into disjoint, ideally conditionally independent, pieces. This feature
makes LOOIC and WAIC much more appealing from a Bayesian predictive
perspective, however this data distinction could represent a limitation when
applied to structured, for instance hierarchical, models. In addition, cross-
validation methods can be computationally expensive unless we are framed
in settings where some shortcuts are available to approximate the
distributions f(yi|y−i) without re-fitting the model model each time.

2.9.4 Bayesian model comparison and variable selection

LOOICm = −2lppdloo-cv,m.



The Bayesian approach is quite different than the classical approach in the
way that it treats both hypothesis tests and model comparison. Essentially,
the main approach assumes that every hypothesis corresponds to a model
and therefore hypothesis tests are simply referring to the comparison of
pairs of models. There is no requirement for the two models under
comparison to be nested although hypothesis tests are more naturally
framed in the nested model comparison setup.

Another characteristic here is that the model comparison on the classical
approach usually relies in the maximum likelihood ratio (i.e. checks how
much the fit changes via a comparison of the maximum likelihoods of the
two competing models) while in the Bayesian approach we base our
decision in the comparison of “averaged” marginal likelihoods of each
model.

2.9.4.1 Bayes factor and posterior model odds

In order to proceed with Bayesian hypothesis tests and/or model
comparison, we need to expand our model formulation by considering m to
be an model indicator which will be treated as a (discrete) parameter under
estimation. Under this approach, we need to attach a prior model probability
f(m) and then calculate the posterior model probability in a similar manner
as in the single model approach described in Section 2.5.

For the hypothesis test setup, we need to consider only two models, that
is m ∈ {M0,M1}. So let us consider the case that we wish to compare two
models M1 and M0 with parameters θM1  and θM0 , respectively. Under this
setup we need to estimate (m, θM0 , θM1) from the following posterior
distributions of interest



1. The posterior distribution of the parameters of model Mk: f(θMk
|y)

for k = 0, 1.

2. The posterior probabilities of the two models given by f(Mk|y) for
k = 0, 1.

For the model comparison between M0 and M1 we are interested for the
comparison of f(M1|y) and f(M0|y) via the calculation of their ratio
which is called posterior model odds and is given by

(2.19)

which is said to be the posterior model odds of model M1 versus model M0.
The ratio of prior model probabilities f(M1)

f(M0)  defines prior preference

towards one or another model. A naive approach is to assume that the prior
model probabilities are equal when no other information is available. Under
this approach, the posterior model odds is equal to the Bayes factor B10.

The Bayes factor of model M1 versus model M0, B10, is defined as the
ratio of the “marginal” likelihoods f(y|M1) and f(y|M0). The Bayes
factor can be expressed as the posterior odds divided by the prior odds of
two compared models. Therefore, it quantifies the prior to posterior change
of relative evidence for the two compared models.

The marginal likelihood of any model M is the model likelihood
“averaged” over the prior distribution. It is also called the Bayesian
likelihood or the Bayesian “evidence” and it is given by

PO10 =
f(M1|y)
f(M0|y)

=
f(y|M1)
f(y|M0)

×
f(M1)
f(M0)

= B10 ×
f(M1)
f(M0)

,



(2.20)

Integral (2.20) is analytically tractable when the conjugate prior approach is
adopted. For other priors, numerical or MCMC methods must be used
instead.

Posterior model odds PO10 (and Bayes factors B10) allow for a
straightforward Bayesian model comparison and testing according to
Jeffreys' interpretation. Under his suggestion, for PO10 > 1 (or B10 > 1)
we have evidence in favour of model M1 which is characterized as:

negligible or “not worth than a bare mention” for PO10 ∈ (1, 3],

positive for PO10 ∈ (3, 20],

strong for PO10 ∈ (20, 150],

very strong for PO10 > 150.

For PO10 < 1 we have evidence in favour of the null model using similar
interpretation as for PO01 = 1/PO10; for more details, see (Kass and
Raftery, 1995).

The posterior probabilities can be directly obtained from posterior model
odds using the expression

f(y|M) = ∫ f(y|θM ,M)f(θM |M)dθM .

f(mk|y) =
POk0

∑
mℓ∈M

POℓ 0
=

1
∑

mℓ∈M
POℓk

 .



The above pairwise comparison can be easily extended to a model
comparison setup where m ∈ M ; where M  is the set of models under
comparison, commonly called model space. So now the focus is given on
posterior model probabilities or weights f(m|y) given by

(2.21)

2.9.4.2 Posterior probability of variable inclusion

In variable selection literature, the model indicator m is usually substituted
by a vector of binary indicators γ of size p. Each γj corresponds to βj with 
γj = 1 if Xj is included in the model (i.e. βj ≠ 0) and γj = 0 otherwise. We
usually include the constant term in all models, hence γ0 = 1 with prior
probability equal to one.

As the size of the model space is given by |M | = 2p, even a moderate
number of potential covariates results in a large number of models from
which the best one has to be selected. For example for p = 20 covariates
more than one million models have to be considered. In such cases, all
posterior model weights will be low even if a small group of models is
much better than the remaining ones. Alternatively, we may select a model
based on the posterior inclusion probabilities

(2.22)

f(m|y) =
f(y|m)f(m)

∑m′∈M f(y|m′)f(m′)
 .

f(γj = 1|y) = ∑
γ∖j∈{0,1}p−1

 f(γj = 1, γ∖j|y).



In practice, this probability is the sum of posterior probabilities for all
models which include covariate Xj in their linear predictor.

2.9.4.3 Selection of models and covariates

Selection of a single model

If we wish to select a single “best” model then we choose the one with the
maximum posterior probability f(m|y) or identically f(γ|y). This model is
called the maximum a posteriori (MAP). Alternatively, we may use the
posterior variable inclusion probabilities, to trace the median probability
(MP) model, which is defined as the model with all covariates having 
f(γj = 1|y) > 0.5. The MP model has better predictive performance than
the MAP model under certain conditions; for details, see (Barbieri and
Berger, 2004).

Reporting of a set of best models

An advantage of Bayesian model comparison is that we can evaluate
posterior probabilities and hence also quantify the uncertainty concerning
the best fitted models. If we wish to report a group of best models,
following the suggestions of (Kass and Raftery, 1995), we may report
models mk that are similar in terms of posterior evidence to the MAP
model. Hence we may restrict attention and report models with posterior
model odds POMAP ,k < 3, i.e. models which have a posterior probability
that is a least 1/3 of the posterior probability of the MAP model.

Bayesian model Averaging



In certain cases we do not wish to select a specific model but rather want to
make inference or predictions by taking into account model uncertainty in
our analysis. Hence we may obtain the model averaged posterior density of
any quantity of interest ξ by considering the posterior distributions 
f(ξ|m, y) weighted by the corresponding model weights f(m|y). The set
of models we include in the model averaging procedure may be remarkably
reduced by considering only the ones with POMAP ,k < 3 or by including
models with covariates having posterior inclusion probabilities higher than
0.5.

2.9.4.4 The “Paradox” in the room

Before closing this short section, we should mention an important problem
of Bayesian model comparison: marginal likelihoods and the resulting
Bayes factors are sensitive on the dispersion parameters of the priors 
f(βM |M). This problem is widely known as the Lindley–Bartlett or
Jeffreys paradox Lindley (1957); Bartlett (1957). Hence the specification of
the prior parameters in variable selection problems becomes a very
important issue which is partially diluted when using Zellner's g-prior setup
(Zellner, 1986).

2.9.5 Training and testing our model

In modern statistics and data science, we need to train our model (i.e.
estimate its parameters) on a “train” dataset. In order to test our model, in
an out-of-sample fashion, we need to have an additional dataset called
“test” or “validation” where we measure its accuracy using several
measures. Most of the times, we have a single dataset which we split it in
train and test sub-datasets in order to evaluate its prediction accuracy.



Nevertheless, the biggest problem is how to split the dataset: what should
be the size of each dataset and which observations should go in each
segment. Usually random sampling is applied when observations are not
depended of some kind. When the data are time dependent, then we should
be careful with the selection of the train and the dataset since future data
cannot be used to train a model for prediction in the past. Football data can
be viewed as time series data since the data come in batches of weeks/game
days. Hence, we will avoid random splitting even if the implemented model
is not using temporal components.

Generally, when we wish to evaluate the predictive performance of the
model, we split our dataset D = {1, 2, … ,n} in the train sub-sample T  of
size n* and the test/validation dataset V = D ∖T  sub-sample of size 
nv = n − n∗. In general contents, the split of the data is implemented
randomly. Nevertheless, our data in football (and more generally in sports)
are appearing sequentially every game day or week. Hence, the split of the
season data arises naturally. Hence we usually have the data available up to
week w* (and n∗ = w∗K/2) and we try to predict the final results for the
rest of the matches. Therefore, n stands for the number of games of the full
season, n* the number of games available to the time point of interest and nv

the remaining, to be predicted, number of games while T = {1, 2, … ,n∗}

and V = {n∗ + 1, 2, … ,n}.
Nevertheless, in the full regeneration of the league we will focus on the

evaluation of goodness of fit of the model. In this occasion we do not split
the dataset D  but we consider the full dataset in order to both train and
evaluate the (in-sample) performance of the model. Hence, we set 
T = V = D .

2.9.6 Out-of-sample prediction



With the term out-of-sample (or held-out) prediction we mean the ability of
a model to predict the final outcome (of a game) in future data which have
not used in the learning or the estimation procedure. Hence we train the
data using observations of data from a train dataset T  and we test the
predictive ability in the validation dataset V . In order to be able to
implement this out-of-sample prediction, we need to know the response or
outcome values also in V . This is not happening naturally when collecting
data from experiments since V  should refer to future observations where
the outcome variable is unknown.

Hence the out-of-sample evaluation is usually implemented in the dataset
at hand where the whole dataset D  is split in T  and V . This procedure is
called cross-validation. Naturally, many questions about the implementation
of cross-validation arise. For example, how large shall we select the sample
size n* of train set and nv of the validation set given the sample size n? How
many times shall we repeat the procedure? For a random selection of splits
or for all splits should we report the mean, standard deviation or the whole
distribution of the metric we are considering?

A popular cross-validation approach is the k-fold cross-validation. In this
approach we select the number of sub-datasets Dk that we are going to split
the dataset via k, and indirectly the size of the validation set at each time
which will be about nv = ⌊n/k⌋. Then we select the validation dataset as
one of the sub-datasets i.e. V = Dd and the train set to contain all
observations by the rest of the sub-data, i.e. T = D ∖Dd. We repeat this
procedure for d = 1, … , k and we calculate and report the mean of the
evaluation measure. Usually, k is selected to be equal to ten. Another
standard method is to select k = n which results to the leave-one-out cross-
validation approach.



2.9.7 Prediction evaluation metrics

For numeric variables, the most common metrics are:

RMSE: the root mean square error given by √ 1
nv

∑
i∈V

 (yi − y
pred
i )

2
.

MAE/MAD: the mean absolute error/deviance given by 
1
nv

∑
i∈V

  yi − y
pred
i .

R2: just a transformation of RMSE, expressed as a percentage of
improvement in mean square error (MSE) in comparison to the constant
model. It can be calculated as R2 = 1 − MSE/MSE0 where 
MSE = RMSE2, MSE0 = nv−1

nv
S 2
V  and S 2

V  is the variance of Y in the
validation dataset.

(Negative) Log predictive score or density (LPS): is given by 
− log f(yV |θT ); where yV = {yi : i ∈ V } and θT  are the parameters
of the model estimated with the data of the train test.

For binary categorical factors the most common approach is to construct the
2 × 2 contingency table between the predicted and observed categories
which is called confusion matrix in statistics and machine learning domains.
The confusion matrix has the form of Table 2.7, where nij (for i = 1, 2 and 
j = 1, 2) are the frequencies for the combination of true and predicted
outcomes (the values of one and two correspond to the negative and
positive outcome respectively while i is used to the true outcome and j for
the predicted one). The marginal frequencies ni∙ and n∙j correspond to the
marginal frequencies of the true and predicted outcomes, respectively.

TABLE 2.7∣ ∣



Confusion matrix, predicted vs observed results⏎

Actual Outcome

Predicted Outcome
Marginal for True

outcome
Negative

(N)
Positive

(P)

Negative (N) n11 (TN) n12 (FP) n1∙

Positive (P) n21 (FN) n22 (TP) n2∙

Marginal for
Predicted

n∙1 n∙2 n

It is obvious that the frequencies in the diagonal of the table correspond
to the correct predictions and are called true negatives (TN=n11) and true
positives (TP=n22), respectively. These observations are also called
concordant pairs (of predictions and observed values). Naturally, the off-
diagonal frequencies n12 and n21 correspond to discordant pairs or values
and represent the observations that are not predicted correctly. Specifically
these are called false negatives (FN=n21) and false positives (FP=n12).

From these values, we calculate and report the following measures:

Sensitivity or recall is the proportion of positive cases predicted correctly,
given by TP/n1∙.

Specificity is the proportion of negative cases predicted correctly, given
by TN/n2∙.

Accuracy is simply the proportion of correct predictions, given by 
(TP + TN)/n.

Cohen's Kappa coefficient: this metric adjusts for correct prediction
found by chance and is given by



and J is the number of levels for the outcome variable (in our case J = 2

).

For general multi-category outcomes, we may use the accuracy, the kappa
of Cohen and its weighted version. More details about evaluation metrics
can be found in Section 3.4.

κ =
Accuracy − Pe

1 − Pe
= 1 −

1 − Accuracy

1 − Pe
,   where  pe =

1
n

J

∑
j=1

nj∙n∙



2.10 Summary and closing remarks of Chapter 2

In this chapter, we provided a comprehensive examination of statistical
methodologies and computational tools applied in modelling football match
outcomes. The discussion began with the formulation of predictive and
descriptive models, particularly emphasizing the double Poisson model and
its foundational role in football analytics. This model's simplicity,
adaptability, and relevance to the sport's unique characteristics make it an
essential starting point for further statistical exploration.

Key methods of estimation were reviewed, contrasting the classical
approach of maximum likelihood estimation (MLE) with Bayesian
inference. The chapter underscored the flexibility and depth offered by
Bayesian methodologies, supported by tools like Markov Chain Monte
Carlo (MCMC) algorithms, including Metropolis-Hastings and Gibbs
sampling. These methods enable the integration of prior knowledge,
allowing for a richer and more robust model calibration.

The inclusion of examples, such as the English Premier League dataset
analysis, illustrated the practical implementation of these models. The use
of R-based tools, including glm for MLE and advanced packages for
Bayesian computation, provided actionable guidance for practitioners. The
chapter also highlighted specialized Bayesian analysis software like
WinBUGS/OpenBUGS which support advanced Bayesian modelling, and
emphasized the critical role of careful data preparation and transformation.

Beyond methodology, the discussion addressed fundamental challenges
and considerations in model application, including assumptions of
independence, over-dispersion, and the dynamic nature of team abilities.
The limitations of vanilla Poisson models, particularly in hybrid tournament
formats, were acknowledged, advocating for the inclusion of team-specific
covariates and performance metrics for enhanced prediction accuracy.



While this chapter has laid a solid foundation for understanding the
statistical modelling of football outcomes, several avenues for future
research remain. The integration of more sophisticated covariates, such as
economic indicators or advanced performance metrics, could provide
deeper insights. Additionally, exploring the scalability of these models to
other team sports or non-sporting contexts could further validate their
utility.

The emergence of computationally intensive methods, such as
Hamiltonian Monte Carlo, signals a growing intersection of statistical rigor
and computational advancements. Future efforts should focus on
simplifying these tools' accessibility, fostering broader adoption among
analysts and researchers.

In summary, this chapter has not only outlined the theoretical and
computational frameworks necessary for football analytics but also set the
stage for innovative applications in predictive modelling and decision-
making within and beyond sports.

In the next chapter, we will focus in prediction for tournaments based on
simulation. Detailed approaches based both on Bayesian and classical
approaches will be presented in detail.

Appendix: Notation

Indexes and basic constants

n: Number of games in the league/dataset



K: Number of teams in the league/dataset

T: Number of weeks in the league/dataset

J: Number of levels/categories in a categorical variable; J = 3 for
football match outcome.

i ∈ {1, … ,n}: Observation/game index for game-arranged data

ℓ ∈ {1, 2}: Index denoting the home or away team for values one or two,
respectively (for game-arranged data)

k ∈ {1, … ,K}: Team index

w ∈ {1, … ,W}: Week index

ı: observation index for univariate-arranged data with ı = 2i − 2 − ℓ

t ∈ {1, … ,T}: Monte Carlo iteration index/superscript

j ∈ {1, … , J}: level/category index for a categorical variable

Model parameters

θi1, θi2: parameter vectors for home and away teams

ρi: dependence parameter between home and away goals

μ: constant parameter in the vanilla model

home: home effect parameter

attk, defk: Fixed attacking and defensive parameter of k team

attk,t, defk,t: Dynamic/random attacking and defensive parameter of k
team at week t



σ2
a and σ2

d: random abilities variances

β
(ℓ)
j : effect of covariate j of home (ℓ = 1) or away team (ℓ = 2)

Variables and data for game-arranged data

Yi1,Yi2: goals of the home and away team for game i

Zi = Yi1 − Yi2: goal difference for game i

Ωi: Outcome of i game with three possible values: 1:home win, 2:draw,
3:home loss; Ωi = I (Zi > 0) + 2I (Zi = 0) + 3I (Zi < 0).

Oi = 2 − Ωi: Outcome of i game with three possible values: –1: away
win, 0: draw, 1:home win.

λiℓ: Expected goals (in Poisson) of the home and away team for game i

ηiℓ: Predictor of the home and away team for game i

X
(ℓ)
ij , x(ℓ)

ij : Covariates/Features for the home or away team

Variables and data for univariate-arranged data

Yı: goals scored in ı observation of +++ data; Note that ı = 2i − 2 − ℓ

hence Yı refers to the goals scored by the home team (ℓ = 1) or the away
team (ℓ = 2) in game i

HTı, ATı: covariates denoting the home and away teams



Homeı: dummy variable denoting if the goals Yı were scored by a home
team

X
(ℓ)
ıj : Covariates/Features for the scoring team (ℓ = 1) of Yı or the

opponent team (ℓ = 2) which receives the goals Yı

Attı: attacking team which scores Yı goals

Defı: defending team which receives Yı goals



3
Tournament and game prediction via
simulation

DOI: 10.1201/9781003186496-3

3.1 Game score and outcome prediction

In this chapter, we will focus on the different approaches of making
predictions using our statistical models. We first present how we can
estimate individual games. We then proceed on presenting computationally
intensive methods on how we can regenerate a league or a tournament using
the data of a full season. This can be used to evaluate the goodness-of-fit of
the model. Using several alternative Monte Carlo approaches, we can
generate data for the remaining games and use this for prediction and/or for
evaluating the out-of-sample predictive ability of the model under study.

3.1.1 Final score prediction using point estimates

The most popular approach is to estimate the model parameters and then,
based on these point estimates, to calculate the probabilities of each
outcome (home win/draw/away win) and consider as prediction the
outcome with the highest estimated probability. Similarly, we can use the

https://doi.org/10.1201/9781003186496-3


estimates of the estimated expected goals (or rounded versions of them) as
the predicted scores.

For these estimates, the maximum likelihood estimates (MLEs) of the
model parameters β̂ are commonly considered point estimates. Such MLEs
are directly available by our GLM implementation functions. Then, for each
game i, the expected number of goals λ̂i1 and λ̂i2 are calculated as simple
functions of the MLEs (if a goal-based model is considered). Finally, the
probabilities of each match outcome p̂Home

i , p̂Draw
i , p̂Awayi  will be calculated

by the assumed model distribution using the estimated expected goals (and
other additional parameters, if needed). In the case we use outcome-based
predictive models, such as the multinomial logistic regression, then the final
outcome probabilities p̂Home

i , p̂Draw
i , p̂Awayi  are directly obtained as

functions of the MLEs of model parameters, β̂.
Similarly, in the Bayesian setup we can follow exactly the same logic by

using as point estimates the posterior mean or median values of the model
parameters β̃. Then a point estimate of the final match outcome
probabilities can be simply obtained as function of β̃. Although such
strategy is the direct analogue of the approach used in the frequentist
approach, it is not recommended within the Bayesian approach. With the
power of MCMC, it is feasible to obtain a sample directly from the
posterior distribution of the posterior outcome probabilities. Thus the whole
distribution is available (through the posterior sample) and hence
considering directly the posterior mean or median of these probabilities is
more preferable than considering functions of the posterior means/medians
of the model parameters β.

Finally, all these approaches focus on predicting the final outcome as the
point estimation of the match outcomes. Even if we consider the sampling
distribution of β or their posterior distribution within the Bayesian



paradigm, they do not account for the additional variability which is
assumed/inherited via the model itself.

In the following, we are going to present three simulation-based
alternatives which estimate the probability of each match outcome by
taking into consideration also the uncertainty introduced by the assumed
model/distribution. This approach can be used to re-generate whole leagues
or competitions and, by this way, to estimate also other quantities of interest
such as the final ranking in the league or the expected league points of each
team.

3.1.2 Plug-in Monte Carlo method

The simplest approach to re-generate the league and estimate the
probability of each outcome is to use the point estimates of the model
parameters discussed in the previous section. Without loss of generality, let
us denote the point estimates by β̂, the general procedure can be described
by the steps proposed by algorithm 2.

Algorithm 2 Game Score Generation Using Plug-in Monte Carlo
Method ⏎

Inputs: β: model parameters
  β̂: Estimates of model parameters
  Yik: Goals scored by the home (k = 1) and away (k = 2) team

in game i
  f(θik): Assumed goal distribution in game i for home (k = 1)

and away (k = 2) team
  θi1 and θi2: model parameters of D  for home and away teams



  θ̂i1 and θ̂i2: Estimates of model parameters of D  for home and
away teams

For t = 1, … ,T  REPEAT:

1. Calculate θ̂i1 and θ̂i2 as functions of the estimated model parameters
β̂

2. Generate Y ∗(t)
ik

 from D(θ̂ik) for k = 1, 2 (home and away teams)
and game i

3. Calculate the predicted/generated goal difference for game i from 
Z

∗(t)
i = Y

∗(t)
i1 − Y

∗(t)
i2

4. Calculate the predicted/generated match outcome of game i from 
O

∗(t)
i = I(Z ∗(t)

i > 0) −I(Z ∗(t)
i < 0)

*Variable O∗(t)
i  takes values in {−1, 0, 1} with 1 → home win, 0 →

draw, and −1 → win of the away team; I (A) is an indicator
variable which takes the value one if A is true or takes the value of
zero, otherwise.

In this procedure, T denotes the number of generated repetitions for each
game i in the league/competition under consideration. At the end of the
above algorithm, we will end up with a set of T samples for each game with
predicted goals Y ∗(t)

i1  and Y ∗(t)
i2  scored by home and away teams, the goal

differences Z ∗(t)
i , and the final predicted outcomes O∗(t)

i . A simple
frequency tabulation of Z ∗(t)

i  and O∗(t)
i  will provide estimated probabilities

about the score difference and the final outcome. Estimated probabilities
and predictions for specific scores can be obtained by the cross-tabulation
of Y ∗(t)

i1  and Y ∗(t)
i2 .



3.1.3 Prediction using Bootstrap

Parametric Bootstrap approach

The plug-in approach in the previous section ignores the estimation error
and the sampling variability of the estimated parameters β which should be
taken into consideration. A very simple approach is to incorporate this
variability in the algorithms described in Section 3.1.2 by generating
random values from the sampling distribution of β̂. So instead of using
directly MLE values β̂ in the above simulation-based approach for each
drop generated replication t = 1, … ,T , we first generate a set of
coefficients

where Σ̂ is the (approximate) variance/covariance matrix calculated by the
inverse observed information matrix. So, under this approach, algorithm 2
will be now replaced by algorithm 3.

Algorithm 3 Game Score Generation Using Parametric Bootstrap ⏎

STEP 1: Calculate Σ̂ = [I(β̂)]
−1

 with I (β̂) being a matrix of

dimension p × p with elements Iij = ∂ 2ℓ(β)

∂βi∂βj
; where ℓ(β) is the model

log-likelihood given by ℓ(β) = ∑n
i=1 log f(yi1, yi2|β) and p is the

length of β

STEP 2: Generate from β(t) ∼ N(β̂(t), Σ̂−1)

β(t) ∼ N(β̂(t), Σ̂),



STEPS 3–5: Set β̂ = β(t) and follow steps 1–4 from algorithm 2 in
Section 3.1.2.

A simplified approach is to ignore possible correlation between
parameters and generate all coefficients from

So now the game score generation procedure will be simplified to the one
described by algorithm 4.

Algorithm 4 Game Score Generation Using Simplified Parametric
Bootstrap ⏎

STEP 1: Calculate the standard errors of β̂j (for j = 1, … , p) by the
output of a model fit, or by using the formula 

se(β̂j) = √[ ∂ 2ℓ
∂β2

j

(β̂)]
−1

 (approximate standard error based on the

observed Fisher information)

STEP 2: Generate from β(t)
j ∼ N(β̂

(t)
j , se(β̂j)

2)

STEPS 3–5: Set β̂ = β(t) and follow steps 1–4 from algorithm 2 in
Section 3.1.2.

In the case that the se(β̂j) is not available (even asymptotically), then we
can use bootstrap to estimate it. This can be done by getting replications of
samples (with replacement) from the actual sample, estimating in each
sample the coefficient of interest and use the estimated standard deviation

β
(t)
j ∼ N(β̂(t)

j , se(β̂j)
2).



(across different samples) of the estimated values as the standard error. The
same procedure can be also used for the variance/covariance matrix. Note
that by obtaining a sample with replacement here we mean that we select
which rows of the dataset will appear in each generated bootstrap sample.
This approach is computationally more demanding since it requires to fit T
models in order to obtain the estimated coefficients in each bootstrap
sample. For this reason, a better alternative might be to use a full bootstrap
approach to generate predictions and estimate the required predicted
probabilities and scores. This procedure is described in the paragraph which
follows.

Full Bootstrap approach

An alternative to the parametric bootstrap is to use the full bootstrap
approach. Again here we generate T bootstrap datasets which will be
comprised by considering randomly (with replacement) rows of the original
dataset. For each bootstrap sample, we fit our model and obtain the
corresponding coefficient and fitted values. Then, we generate predicted
scores based on the model sampling distribution and we can calculate the
final probabilities by the frequencies of each match outcome.

This approach is computationally more demanding than the simple
parametric bootstrap since it requires to fit T models in order to obtain the
estimated coefficients in each bootstrap sample. Moreover, it might require
larger number of replications than the bootstrap approach for the estimation
of each se(β̂j) in order to achieve similar levels of precision. So the full
bootstrap approach can be summarized by algorithm 5.

Algorithm 5 Game Score Generation Using Full Bootstrap ⏎



STEP 1: Take a full sample (with replacement) S (t)
1 , … ,S (t)

n  from value
from 1 to n, that is the vector (1, 2, … ,n) – in R, use the syntax
sample(1:n,replace=T)

STEP 2: Select the observations (i.e. rows of data) which correspond to 
S

(t)
i  (for i = 1, … ,n) to obtain the bootstrap sample y∗(t) and X ∗(t)

STEP 3: Fit the model with the bootstrap data y∗(t) and X ∗(t) to obtain 
β̂∗(t)

STEPS 4–6: Set β̂ = β̂∗(t) and follow steps 1–4 from algorithm 2 in
Section 3.1.2

3.1.4 Bayesian prediction via MCMC

Under the Bayesian approach, we may generate match results and
regenerate a sport competition by obtaining samples of Y ∗(t)

i1  and Y ∗(t)
i2 , for 

t = 1, … ,T , from the (posterior) predictive distribution which is given by

where y1, y2 are the observed goals for the two opponent teams, and 
Y ∗
i1,Y ∗

i1 are the random variables representing predicted future responses.
Under this approach, we work under a two-step simulating procedure: we

only need to generate a sample of the model parameters β(t) from the
posterior distribution f(β|y1, y2) (second part of the above integral) and
then obtain the samples Y ∗(t)

i1  and Y ∗(t)
i2  from the model sampling

distribution f(Y ∗
i1,Y ∗

i1 | β) (first part of the integral) for the sampled
parameters values, i.e. for β = β(t).

f(Y ∗
i1,Y ∗

i1|y1, y2) = ∫ f(Y ∗
i1,Y ∗

i1|β)f(β|y1, y2)dβ,



A standard way to obtain a sample from the posterior distribution 
f(β|y1, y2) is by using Markov Chain Monte Carlo (see for example in
Ntzoufras, 2009) and related softwares such as WinBUGS/OpenBUGS
(Spiegelhalter et al., 2003; Ntzoufras, 2009; Lunn et al., 2013), JAGS
(Plummer, 2003) or Stan (Carpenter et al., 2017). Then, generating values
from the predictive distribution corresponds to just adding the following
line

in each MCMC iteration of the algorithm. Moreover, the procedure can be
also implemented by using a simple for-loop (or equivalent) code syntax
even when a sample β(t) for t = 1, … ,T  of the parameter vector β is
available from the posterior distribution either from the MCMC output or
any other Monte Carlo method. The procedure is described in algorithm 6
and can be implemented either within each MCMC iteration/step or after
we obtain the MCMC output of the model parameters β(t) for t = 1, … ,T .

Algorithm 6 Game Score Generation Using MCMC ⏎

Inputs: β: model parameters
  β(t): model parameters generated at iteration/step t of the

algorithm
  f(β|y): the posterior distribution of the model parameters β
  D(θ̂ik): Assumed goal distribution D(θ̂ik) for k = 1, 2 (home

and away games) and game i
  θ̂i1 and θ̂i2: Estimates of model parameters of D  for home and

away games

(Y
∗(t)
i1 ,Y

∗(t)
i2 ) ∼ f(Y ∗

i1,Y ∗
i1 | β(t))



For t = 1, … ,T  REPEAT:

1. Generate β(t) from the posterior distribution f(β|y) using MCMC
or other similar methods

2. Calculate θ(t)
i1  and θ(t)

i2  as functions of the generated values β(t) of
the model parameters β at t iteration

3. Generate Y ∗(t)
ik  from D(θ

(t)
ik ) for k = 1, 2 (home and away games)

and game i
4. Calculate the predicted/generated goal difference for game i from 
Z

∗(t)
i = Y

∗(t)
i1 − Y

∗(t)
i2

5. Calculate the predicted/generated match outcome of game i from 
O

∗(t)
i = I(Z ∗(t)

i > 0) −I(Z ∗(t)
i < 0)∗

*Variable O∗(t)
i  takes values in {−1, 0, 1} with 1 → home win, 0 →

draw, and −1 → win of the away team; I (A) is an indicator
variable which takes the value of one if A is true or takes the value of
zero, otherwise

3.2 Game outcome prediction from outcome-based models

In case we are using outcome-based models, then the procedure will be
similar to the one described in algorithm 2 for the plug-in approach with the
following changes:

1. The random variable of the outcome Yi will take three values: 1, 2,
3 which correspond to the win, draw and loss of the home team,
respectively.



2. Parameters θi of each game i will be now the probabilities of win,
draw and loss for the home team.

3. The outcome distribution f(θi) will be now a multinomial
distribution with three possible outcomes.

Hence, algorithm 2 will be now changed to algorithm 7 which follows.

Algorithm 7 Outcome Generation Using Plug-in Monte Carlo Method ⏎

Inputs: β: model parameters
  β̂: (MLE) Estimates of model parameters
  Ωi: Outcome of game i with three possible values: 1 for home

win, 2 for draw, 3 for away win
  Oi = 2 − Ωi: Outcome of game i with three possible values: –

1 for away win, 0 for draw, 1 for home win
  Multinomial(pHome

i , pDraw
i , pAwayi ): Multinomial distribution

for the outcome of game i with three possible outcomes: home
win, draw, away win

  pHome
i , pDraw

i , pAwayi : model parameters of the Multinomial

distribution
  p̂Home

i , p̂Draw
i , p̂Awayi : Estimates of outcome probabilities.

For t = 1, … ,T  REPEAT:

1. Calculate the outcome probabilities p̂Home
i , p̂Draw

i , p̂Awayi  for game i
as simple functions of the estimated model parameters β̂.

2. Generate the match outcome Ω∗(t)
i  from the Multinomial distribution

with probabilities p̂i = (p̂Home
i , p̂Draw

i , p̂Awayi ).



3. Set O∗(t)
i = 2 − Ω∗(t)

i  (in order to have the same coding for the
match outcomes as in the algorithm for the goal-based approach).

The output of the algorithm will be now a vector of the possible
predicted/generated outcomes O∗(t)

i  for each game i over T different
repetitions. Again, the results can be summarized by the relative
frequencies of the three outcomes over the T repetitions of the
predicted/generated results. With this approach, obviously, no inference can
be done for the final score or the score difference since the models focus
only on predicting the final outcome and not the score of each game.

Similarly the bootstrap and Bayesian approach, Algorithms 3–5 and 6,
respectively, will be slightly changed as described in the beginning of this
section. Detailed description is omitted for brevity.

3.3 Tournament regeneration and prediction

The next step in our analysis is to simulate scenarios for checking the
goodness of fit and the predictive ability of the fitted model (or more
general machine learningalgorithm) with respect the final ranking of the
tournament and the points collected at the end of the season in the case of a
round-robin (league) competition.

3.3.1 League regeneration and prediction

Here we first focus on full leagues tournaments based on a round-robin
system with a possibility for play-offs in some occasions. Other types of
knock-out-based tournaments are discussed in Section 3.3.4 which follows.
This can be implemented in two different perspectives:



The first approach is mainly used to see what will happen (according to
the fitted model and the given estimated team performance) if the league
was replicated many times. Hence, it can be used to compare the observed
final league with the results obtained by the simulated leagues. This
approach can be used to check the goodness of fit of the model in terms of
final league reproducibility.

The second approach will act in a predictive fashion, since the first part
of the observed games of the league will act as the training dataset while the
rest of the games at the test dataset. Hence, with this approach we can
assess the predictive ability of the fitted model.

In both approaches, the input will be the set of simulated outcomes O∗(t)
i

for i ∈ V  and t = 1, … ,T  or alternatively the goal differences Z ∗(t)
i  for

each game i, where n is the number of games in the league and T denotes
the number of simulated leagues.

The difference in the two approaches is the set of games V  for which we
will need to generate their results and the set of data we have used to train
our model. In the first approach, we will fit/train our model using the data
of the full season, i.e. T = {1, 2, … ,n} and we will generate results for
all the games, that is V = {1, 2, … ,n}, i.e. T = V . In the second

Retrospective approach (at the end of the season): re-simulate all
the game results. By this we reproduce the whole league again
using simulated results based on the data of the whole season (or
more seasons if a more general model is used).

(a)

Predictive approach (at any point in the middle of the season): re-
simulate the remaining game results at a given point of the season.
By this we predict what will be the final ranking of the league or
the competition of the season.

(b)



approach we have data available up to game n*, hence, we will fit/train our
model using only the available data, i.e. T = {1, 2, … ,n∗} and we will
generate results for the remaining games, that is 
V = {n∗ + 1,n∗ + 2, … ,n}, hence V = T = D ∖T , where D  is the
data of the full season with n matches/games. Hence in the second
approach, we set O∗(t)

i = O
(t)
i  or Z ∗(t)

i = Z
(t)
i  (i.e. the observed outcomes

or goal differences respectively) for i = 1, 2, … ,n∗.

3.3.2 Calculating expected points and other league metrics

Using the set of simulated outcomes O∗(t)
i  or goal differences Z ∗(t)

i , then we
can calculate the:

1. Expected number of points earned by each team.

2. Distribution of the points that could be potentially earned by each
team.

3. Expected ranking and/or the ranking under the expected number of
points.

4. Probabilities of ending up in each position of the league.

All the above measures can be used either graphically or using simple
measures to assess how close is the final ranking under the model with the
one finally observed. Given that you decide that the model performs
sufficiently well, you can also assess simple working hypotheses like
whether a team over-performed or under-performed in comparison to what
was expected under the fitted model or whether a champion deserved to win
the league.

–



In both approaches, we are interested to calculate the expected number of
points for each team k, for k = 1, … ,K denoted by xPk. This will be
simply derived as the sample mean of the points P (t)

k
 of each team

calculated in each iteration t of the Monte Carlo algorithm. In the case of
full regeneration of the league, then

where HP
(t)
k

 and AP (t)
k

 are the predicted home and away points generated
from the fitted model at iteration t of the Monte Carlo algorithm for team k,
respectively. These quantities will be calculated as

where I (A) is an indicator function taking the value of one when A is true
and zero otherwise, W (t)

i , D(t)
i  and L(t)

i  are zero-one indicators for the
observed win, draw and loss of the home team, respectively, in game i
given by

(3.1)

P
(t)
k = HP

(t)
k + AP

(t)
k ,

HP
(t)
k =

n

∑
i=1

I (hti = k)(3W
(t)
i + D

(t)
i )

AP
(t)
k =

n

∑
i=1

I (ati = k)(3L
(t)
i + D

(t)
i )

W
(t)
i = I (Z

∗(t)
i > 0) = I (O

∗(t)
i = 1),



(3.2)

(3.3)

and Z ∗(t)
i  are the generated observed goal differences for game i in iteration

t of the Monte Carlo algorithm. If an outcome-based model is used, then we
can only use the generated outcomes O∗(t)

i  to specify Wi, Di and Li game
outcome indicators.

As we have already mentioned, in the second case, where only n* data
points/games are available, then the only change in the above approach will
be to substitute Z ∗(t)

i  by the observed goal differences Zi or outcomes Oi for
all the games i ≤ n∗. Under this approach, the predicted points for iteration
t can now be rewritten as

(3.4)

where HPk,n∗  and APk,n∗  are the observed points collected by team k up to
game day or week w* (i.e. up to available game n∗ = w∗K/2) in home and
away games, respectively; HP

∗(t)
k,n∗  and AP ∗(t)

k,n∗  are the predicted points
generated from the fitted model at iteration t of the Monte Carlo algorithm
for team k after game day or week w* in home and away games,

D
(t)
i = I (Z ∗(t)

i = 0) = I (O∗(t)
i = 0),

L
(t)
i = I (Z

∗(t)
i < 0) = I (O

∗(t)
i = −1),

P
(t)
k = HPk,n∗ + APk,n∗ + HP

(t)
k,n∗ + AP

(t)
k,n∗ ,



respectively. Therefore, the components of (3.4) will be calculated by the
following formulas

Under both the approaches, the expected number of points will be simply
calculated as

As the output of the simulation algorithm, we will obtain a sample xP
(t)
k

of size T with the generated points achieved by team k for each of the T
generated leagues/scenarios. Then we can easily obtain a predicted final
table using the mean or median points. We can further use standard
deviations or quantiles to quantify the accuracy of the replication or
uncertainty of the final outcome and boxplots or histograms to depict of the
distribution of the final points for each team; see Figures 3.1 and 3.2 and
Table 3.1 for an example.

HPk =
n∗

∑
i=1

I (hti = k) (3Wi + Di)    HP
(t)
k,n∗ =

n

∑
i=n∗+1

I (hti = k)(3W

APk =
n∗

∑
i=1

I (ati = k) (3Li + Di)    AP
(t)
k,n∗ =

n

∑
i=n∗+1

I (ati = k)(3

xPk =
1

T

T

∑
t=1

P
(t)
k .



Long Description for Figure 3.1

FIGURE 3.1
Comparison between observed and expected points for Premier League
Data of Season 2006–2007.⏎



Long Description for Figure 3.2

FIGURE 3.2
Distribution of points based on the Double Poisson model for Premier
League Data of Season 2006–2007; the vertical reference line refers to the
observed points.⏎

TABLE 3.1
League Table based on simulated summaries for Premier League Data of
Season 2006–2007⏎



Similarly, for each league we can obtain the rankings (in descending
order) of each team for each t-th generated league which is given by

Again the above rankings can be used to obtain the mean or median rank or
quantiles to summarize the most probable rankings of the team when the
league is replicated many times; see, for example, Figures 3.3 and 3.4.

R
(t)
k

= 1 +
K

∑
ℓ=1

I(xP
(t)
k

< xP
(t)
ℓ ).



Long Description for Figure 3.3

FIGURE 3.3
Distribution of league rankings based on the Double Poisson model for
Premier League Data of Season 2006–2007.⏎



Long Description for Figure 3.4

FIGURE 3.4
Error Bars based on quartiles of points obtained from the Double Poisson
model for Premier League Data of Season 2006–2007.⏎

3.3.3 League prediction scenarios

In order to evaluate the predictive ability of the league, we need to perform
out-of-sample evaluations. The usual random split cross-validation
techniques should not be implemented, especially if the model accounts for
the temporality of the games. Hence, the most usual scenarios for
evaluating the predictive ability in football (and possibly more general in
sports) are the following



1. Mid-season: prediction use the data in the middle of the season to
predict the final league table (usually in full round-robin
competitions).

2. One week-ahead: prediction use the data up to a timepoint (week
or matchday), in order to predict the games in the fixture of next
week/matchday.

3. Play-off: prediction although Play-offs are not so common in
football, when they exist it is very natural to use the full season data
in order to predict the final winner in play-offs.

4. Next-round: prediction use data of the previous rounds to predict
the next one (and the final winner). This is common in knock-out or
hybrid1 competitions.

5. Knock-out Phase prediction this is quite similar to the play-off
prediction but it refers to hybrid competitions and the prediction of
the final winners in knock-out phases using the data of the first
round-robin groups phase.

_________________

 1Hybrid competition is characterized from a first round with mini round-robin groups. The best

teams (1 or more depending on the format) qualify in knock-out type of games.

3.3.3.1 Mid-Season prediction

The most common prediction scenario, from the perspective of the fans, is
the prediction of the winner in the middle of the season (sometimes called
the first round of the league). This is of great interest to the fans since the
first team in the first round also takes the informal title of the “winter
champion”. There is also the belief that the winter champion will also be



the league's final winner. The strength of this belief varies from league to
league (due to the different levels of competitiveness between the
participating teams) and can be extremely strong in some countries.

From the statistical perspective, the information of the data in the middle
of the season is more than enough to accurately estimate the team's abilities
(under the assumption that they remain relatively stable) leading to safe
probabilistic predictions about the final ranking of the teams. Under this
perspective, n* is set equal to K(K − 1)/2, T = {1, 2, … ,K(K − 1)/2}

and V = {K(K − 1)/2 + 1, … ,K(K − 1)}. Then all the measures of
interest are generated and calculated as described in Sections 3.1 and 3.3.2,
respectively.

3.3.3.2 One week ahead prediction

In round-robin tournaments, one-week ahead prediction prediction is
popular and generally straightforward to implement. In terms of prediction,
this scenario assumes that the data up to a game day or week w* are
available (i.e. n∗ = w∗K/2 games are available) and we are interested to
predict the outcomes of game day or week w∗ + 1 (i.e. K/2 additional
games). Hence, the train dataset here will be T = {1, 2, … ,w∗K/2} and 
V = {w∗K/2 + 1, … , (w∗ + 1)K/2}. Prediction can focus again on the
game score itself, the outcomes (in terms of probabilities) of these K/2

games of w∗ + 1 game day, or even in the prediction of points and rankings
after this extra week. This procedure will be repeated after the results of
each week are available and the model parameters will be updated with
additional information for each week. Within this scenario, the use of the
Bayesian approach is also of important value since it can be implemented
sequentially by using as a prior for the data of week w∗ + 1, the posterior
distribution of the previous w*. This can considerably speed up



computations and, under this perspective, there is no need to re-run our
model using all data but only using the new data.

Finally, in terms of out-of-sample evaluation of the predictive ability of
the model, then the one-week ahead prediction can be used to measure the
success of our adopted predictive model in each week (concerning goal
score difference, accuracy, precision, recall or F1 of the game outcome, or
in terms of points or ranking prediction) and then obtain the average or the
distribution of the measure of interest across all seasons. One disadvantage
of this approach is that we will need to re-run the model and the simulation
after each week, and this can be alleviated by using Bayesian sequential
methods.

3.3.4 Hybrid tournaments

In this section, we will focus on tournaments which is a combination of
different tournaments: usually a first round-robin league followed by a
knock-out phase or play-off phase. Here we will refer to some of such
formats and then we will focus on prediction of the second phase after
having observed the data of the first phase. We can categorize the different
formats of hybrid tournaments in the following formats.

1. Round Robin followed by Knock-out tournament: at the end of
the season, the top-K teams start a mini knock-out tournament
where the two opponents play two times each other (once in each
home stadium).

2. Round Robin followed by Play-off Knock-out games with Mreq

number of wins: at the end of the season, the top-K teams start a
mini knock-out tournament where the two opponents play until one
of the two teams wins Nreq number of games. Usually the teams



with the higher rank in the round-robin phase have priority in
playing at their home stadium. This type of hybrid tournament is
typical in other sports such as Basketball and Volleyball but not in
Football.

3. Multiple Round Robin Groups followed by Knock-out
tournament: the participating teams are separated in groups of K
(usually four) teams according to their strength/ranking in previous
seasons. The groups are composed from one team from each level
of ranking in order that the competitiveness is similar across
groups. The first and the second of each group proceed to the next
knock-out phase. This is quite typical in Champions League,
Europa League, and World Cups.

4. Round Robin followed by Play-off Round-robin tournament:
not met very often but leagues with lower level of competitiveness
(such as the Greek and the Scottish league) are using this format.
Usually the top-K are separated in the second phase and the play
again a full round-robin tournament. The points (or part of their
points) in the first phase are carried along the second phase.

5. Round Robin followed by Play-out (Knock-out) games: the
bottom-K teams play in a knock-out tournament with one or two
games in each pair of opponents. Sometimes it is just a single
knock-out phase deciding the winners.

There are also other special types of tournaments where their design is
rather creative. Such tournaments can include different layers of different
phases and types of tournaments (round robin, simple knock-out phase or
play-off knock-out games with multiple games). For example, in the Greek
Superleague currently comprises from 14 teams. The league has both play-



off and play-outs in the form of round-robin tournaments. The play-out
include the bottom eight teams which they compete in order to avoid the
bottom two positions leading to relegation. In the same league the top six
teams qualify for the play-offs (again in round-robin format) and they
compete each other for the title of the champion as well as for the
remaining tickets for the European tournaments (Champions League,
Europa League and Conference League). In the past, the champion was
announced in the normal season and the play-offs were between teams in
positions 2–7 which were competing each other for places either in
Champions league or in Europa league.

3.3.4.1 Knock-Out Play-off prediction

This format is not popular in association football but in sports like
basketball or volleyball. We have included it in this section, in order to
make this chapter more complete in terms of different tournament formats.

Usually, a knock-out play-off phase follows after the end of a regular
round-robin season. Each pair of opponents play in a series of games. The
winner is the team which first wins Nreq games in the series. Hence, the
minimum number of matches between two opponents is at least Nreq and at
most Nseq = 2Nreq − 1 with Nreq to be usually equal to three, five or seven
(usually an odd number of games). Often Nreq increases as the tournament
progresses. For example, we may have Nreq = 3 for the quarter-finals, 
Nreq = 5 for the semi-finals and Nreq = 7 for the final. The games are in
the home stadiums of both teams in a scheme which interchanges. Usually,
a team has an advantage and plays the first and the last game of the series in
their home stadium.

For each simulation scheme, we generate a sequence of matches from the
predictive distribution until we announce a qualifying team; see algorithm 8



for a detailed description. An alternative, simpler way to identify the winner
in each pair of opponent teams in algorithm 8 is to always generate 
Nseq = 2Nreq − 1 matches and then announce as the qualifying team the
one with the highest number of wins. Although, this approach is equivalent
to the algorithm 8 in terms of results, it is less efficient since we are
required to generate a larger number of matches than the ones needed in
order to announce the winner.

For such phase, we may focus on reporting the percentage of correct
predictions with respect to the winner of each game or the team which
qualified to the next round followed by an analysis about the final score or
the game goal difference in each game. Although in other sports Nreq is
equal to 3 or 5, in football usually we have only two games (one in each
home stadium) and it is usually referred simply as a knock-out phase. Also
the final game in such knock-out phases or tournaments consist of a single
game in a neutral stadium (i.e. Nreq = 1).

Simulation of Knock-out play-off phase or tournament is described in
algorithm 8 with the simple knock-out phase or tournament to be a special
case with Nreq = 2 for all series of games except for the final game where 
Nreq = 1 as discussed in the previous paragraph.

Algorithm 8 Stochastic play-offs prediction algorithm ⏎
For t = 1, … ,T  REPEAT:

Set i = 0

Set g = 0, W1 = 0 and W2 = 0

While W1 < Nreq or W2 < Nreq

Update g = g + 1 and i = i + 1



Update which team plays at home (ht) and which as away team
(at) in the g match in the series of games

Update the parameters of the model accordingly

Generate the match outcome Ω∗(t)
i  from the assumed model

(Poisson, multinomial or other)

Set O∗(t)
i = 2 − Ω

∗(t)
i  (−1 indicates that the away wins, 0 a draw

and 1 win of the home team)

If O
∗(t)
i = 1 then W1 = W1 + 1 else If O

∗(t)
i = −1 then

W2 = W2 + 1

If W1 = Nreq then Q(t) = 1 else if W2 = Nreq then Q(t) = 2

Return Q

Indexes:
t =, 1, …T ; T: number of simulated values for each game;
k = 1, … ,Npairs ; Npairs: number of pairs of opponents to be predicted;
each pair of opponents corresponds to a sequence of matches until Nreq

wins are reached from one of the opponent teams.
W1,W2: number of wins for home and away teams of pair k, respectively;

Algorithm 9 Stochastic knock-out prediction algorithm ⏎
For t = 1, … ,T  REPEAT:

Set W1 = 0

For i ∈ {1, 2}

Update which team plays at home (ht) and which as away team
(at) in the g match in the series of games

Update the parameters of the model accordingly



Generate the match outcome Ω∗(t)
i  from the assumed model

(Poisson, multinomial or other)

Set O∗(t)
i = 2 − Ω

∗(t)
i  (−1 indicates that the away wins, 0 a draw

and 1 win of the home team)

W1 = W1 + O
∗(t)
i

If W1 > 0 then Q(t) = 1

else if W1 < 0 then Q(t) = −1

else Consider the goal difference or penalties to announce the
winner

Return Q

Indexes:
t =, 1, …T ; T: number of simulated values for each game.

3.3.4.2 Knock-out prediction

The simple knock-out phase or tournaments which is a frequent scheme in
European competitions (Champions League knock-out phase, National cup
tournaments etc.) are easier to be simulated since the number of required
games is constant and equal to Nreq = 2 (playing in home and away
stadium of a team) or Nreq = 1 (in finals or European or World Cups of
National teams). Such a tournament can be implemented using 8 with 
Nseq = 2 or Nseq and a slight modification on announcing the winner when
we have an overall tie between the competitors; see modified algorithm 9
for details.

Prediction of the second phase in other hybrid tournaments



The final output of the Monte Carlo of MCMC algorithms described in
Sections 3.1–3.2 is a matrix of values of the final score or the final outcome
(in the form of home win/draw/away win). Although, some metrics on the
game level can be implemented, it is difficult to find a model which will
have an increased precision. Hence, we focus on testing the fit and the
predictability with respect of some marginal characteristics such as the
overall distribution of game scores, goal differences or the accuracy in the
reproduction of the final league.

3.4 Measures of goodness of fit and predictive performance

When implementing a predictive model, it is desirable to evaluate its
performance and, where appropriate, compare it with other competing
models or methods. This evaluation is typically conducted using selected
measures that compare the actual outcomes with those predicted by the
model.

There are two different but complementary perspectives for this
evaluation. The first, known in statistical modelling as “goodness of fit”,
involves using measures to compare the actual responses with the predicted
or fitted values for all observations that were used to estimate the model
parameters (i.e., the data used for learning). This process is referred to as
“in-sample” model evaluation. Ideally, we want a model that is well-fitted,
meaning it explains or predicts the data used for learning in a satisfactory
manner. A poorly fitted model will also produce inaccurate future
predictions.

However, having a well-fitted model does not ensures a good predictive
performance. Goodness-of-fit measures can often overestimate a model's
predictive ability, and in the worst case, you may end up with a model that



fits the current data perfectly but leaves no room for uncertainty in
predicting future observations. Such models are called to be over-fitted. As
a result, the goodness-of-fit approach only helps us eliminate models with
very poor predictive performance.

Therefore, in order to properly evaluate our models, we also need to use
“out-of-sample” approaches, which involve calculating prediction measures
based on responses (i.e. match outcomes) that were not used in the model's
estimation or learning process. This approach provides a more realistic
assessment of the model's predictive ability. Ultimately, the goal is to
identify models that exhibit both acceptable goodness-of-fit and the best
out-of-sample predictive performance.

In this section, we discuss measures that can be used for both “goodness-
of-fit” and “predictive” evaluations. The key distinction between these two
approaches lies in the data used for their calculation. When we use the
training dataset (i.e., the same data used for estimation or learning), we
obtain a goodness-of-fit measure. On the other hand, when we use a test
dataset (i.e., observations not involved in the estimation or learning
process), we derive a predictive evaluation measure.

This review focuses on predictive measures based on score outcomes, as
well as purely probabilistic performance measures, known as scoring rules.
The latter are based on the difference between the probabilities assigned (or
derived) for specific events and the actual outcomes.

3.4.1 Root mean absolute error and mean absolute error

The most commonly used measure for comparing observed and predicted
numerical outcomes is the Root Mean Squared Error (RMSE). As the name
suggests, RMSE calculates the square root of the average squared
differences between observed and predicted (or expected) values. In



football, RMSE can be applied to assess the accuracy of predictions in
several ways. At the match level, it can evaluate the difference between
actual and predicted goals scored or the predicted goal difference.
Additionally, RMSE can be used to measure the differences between
observed points (in the final league standings) and predicted points
(obtained by re-generated leagues as described in Section 3.3) for each
team. Hence, for observed outcomes yi and predicted values ŷi, for 
i = 1, … ,n, the RMSE is given by

(3.5)

where n is the sample size of the dataset used for evaluation (i.e., the size of
either the training or test dataset). Have in mind, that when we refer to
regression models and we apply the formula 3.5 on training data, then the
RMSE is simply an (biased) estimate of the regression error standard
deviance (or the square root of the residual sum of squares).

A key property of RMSE is its sensitivity to large differences between
actual and predicted outcomes. This characteristic can be useful for
identifying and avoiding large deviations in predictions. However, it also
means that one or a few poor predictions can deteriorate the overall
evaluation metric, potentially failing to correctly record the model's overall
predictive performance.

Alternatively, instead of considering we mean of the squared differences
and the take their square root, we can directly consider the mean of the

RMSE =
1

n

n

∑
i=1

(yi − ŷi)2,

⎷



absolute differences and obtain the Mean Absolute Error (MAE) given by

MAE avoids the need to square the differences and then apply the square
root, as it directly considers absolute differences. Consequently, MAE is
easier and more straightforward to interpret than RMSE because it presents
errors in the same units as the response data. Furthermore, MAE is less
sensitive to extreme individual prediction errors than RMSE. It is
sometimes referred to as the Mean Absolute Difference or Deviance
(MAD). In practice, RMSE and MAE are used in complementary way, and
it is common to report both when comparing or evaluating different
predictive models and methods.

With respect to the quantitative characteristics of football, we can
calculate both RMSE and MAE for different quantitative measures either
obtained from individual games or other marginal game outcomes such as
the final league standings. In general we write

(3.6)

MAE =
1

n

n

∑
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|yi − ŷi|.
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(3.7)

for k = 1, … , |Q| and t = 1, … ,T  where |Q| is the length of vector Q on
which the corresponding measure is based and T the number of generated
values of Q. The above versions of RMSE and MAE consider also a time-
point t in order to denote that these quantities can be also calculated in each
iteration of a Monte Carlo method (or bootstrap) instead just comparing the
point predictions of the model.

We may consider different quantities as Q in the calculation of predictive
measures. In match level we may consider:

the number of goals scored by each opponent (Qk = Yk1 and/or 
Qk = Yk2, for k = 1, … ,n; Yk1 and Yk2 are the goals scored by the
home and the away team, respectively, in k game),

the goal difference in each game (Qk = Zk = Yk1 − Yk2, for 
k = 1, … ,n; where Zk is the goal difference for game k),

while in the final league level, we can compare

the number of points collected by each team (i.e. Qk = Pk for 
k = 1, … ,N ; where Pk are the total points collected by team k and N is
number of teams in the league),

the total goal scored by each team (i.e. Qk = TGk1 for k = 1, … ,N ;
where TGk1 are the total goals scored by team k),

the total goal conceded by each team (i.e. Qk = TGk2 for k = 1, … ,N ;
where CGk2 are the total conceded goals by team k),

the total goal difference of each team (i.e. Qk = TZk for k = 1, … ,N ;
where TZk = TGk1 − TGk2 is the total goal difference for team k)



the ranking of each team (i.e. Qk = Rk for k = 1, … ,N ; where Rk is the
final ranking of team k).

Finally, we can assess the marginal distributions of goals scored by the
home team, the away team, and the goal differences by comparing the
observed and predicted frequencies (i.e., the number of matches) for each
value of these three response variables.

3.4.2 Coefficient of determination

Coefficient of determination or simply R2 is a measure that is primarily
used in regression to evaluate the goodness-of-fit of a model and is given by

where σ̂2
ϵ  and σ̂2

y are the biased estimators for the error variance and the
variance of the response variable Y which are given by

(3.8)

Hence, R2 can be viewed as a simple transformation of the error variance.
Since the variance components in both the numerator and denominator of
R2 share the same measurement units, this metric is free of units. Its

R2 = 1 −

n

∑
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 (yi − ŷi)
2

n

∑
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interpretation is quite appealing since it expresses the proportion of
variance of the response variable that is explained by the predictive model.

When applied to a training dataset, R2 ranges from zero to one. A value
of zero indicates a poor model fit, equivalent to the simplest possible
predictive model. This model is often called the constant model and uses
the sample mean as a prediction for all observations. A value of one
indicates a perfect fit, meaning the predicted values exactly match the
observed ones. However, a perfect fit should raise suspicions, as it often
results from obvious relationships (such as using the same variable for both
the response and explanatory variables), recurrent patterns, or severe
overfitting.

Although R2 is commonly used as a measure of goodness-of-fit in
regression models applied to training data, it can also be easily
implemented for test datasets. As mentioned in Section 3.4.1, for test data,
the standard deviation of the error, σϵ = RMSE.

where σ̂2
ytest

 is simply the (biased) estimate of the variance obtained from
the test dataset. Hence, the predictive measure of R2 can be considered as a
simple transformation of RMSE.

3.4.3 Brier score

The Brier score was firstly introduced by Brier et al. (1950) for weather
forecasting, and used, among the others, by Spiegelhalter and Ng (2009) for
football prediction. Essentially, the Brier score is nothing more than an

R2 = 1 −
RMSE 2

σ̂2
ytest



MSE (i.e. squared RMSE) adopted for categorical data. In its simple
version, when binary outcomes are assumed, then yi is the observed
outcome denoted by oi and ŷi is replaced by the corresponding probability
of this outcome pi.

Over the years, the Brier score has become one among the most well-
known indicators for measuring the plausibility of some predictions
expressed in terms of probabilities. Perhaps, the Brier score is a
probabilistic score function designed to assess the accuracy of probabilistic
prediction, being defined as the mean-squared error (MSE) of the forecasts.
According to its original formulation proposed by Brier et al. (1950), the
score measures the mean squared difference between the predicted
probability assigned to the possible outcomes for item i and the actual
outcome ai, ranging from zero to two. Therefore, the lower the Brier score
is for a set of predictions, the better the predictions are calibrated: a Brier
equal to zero corresponds to a perfect prediction, whereas a Brier equal to
two to a useless prediction that put 100% probability on an outcome that did
not occur. For unidimensional predictions, it is strictly equivalent to the
MSE as applied to predicted probabilities.

We start by defining the Brier score for binary events. Regarding
football, we could be interested in evaluating events such as En: “The home
team wins against the away team in the i-th match”. In this case the Brier
score is defined as:

(3.9)

BS =
1

n

n

∑
i=1

(pi − oi)
2,



where pi is the probability for the home win, oi is the observed outcome,
equal zero if the event does not happen, one otherwise. Note that the
version of the BS reported in Equation (3.9) takes values from zero to one.
As we have already mentioned, BS = RMSE 2 when considering ŷi = pi

and yi = oi.
As an example, consider the English Premier League 1994/1995 played

on May, 14th 1995, as reported in Table 3.2: the third column reports some
artificial individual probabilities for the home team win, whereas the fourth
and the fifth column report the draw and the away win probabilities,
respectively. The sixth and seventh column indicate the number of home
and away goals, respectively. The eighth column reports the actual observed
result. Teams denoted in bold correspond to home teams winning the
matches (a = 1). To compute the BS for binary events such as “home
win/no home win” we just need the third column of probabilities. The BS
according to Equation (3.9) is then given by:

TABLE 3.2
English Premier League 1994/1995 probabilities and observed results for
the 42nd match-day, played on May, 14th⏎

home team away team pH pD pL hg ag obs
Chelsea Arsenal 0.61 0.17 0.22 2 1 H
Coventry Everton 0.45 0.25 0.30 0 0 D
Liverpool Blackburn 0.52 0.25 0.23 2 1 H
Manchester
City

QPR 0.45 0.18 0.37 2 3 A

BS = (0.61 − 1)2 + (0.45 − 0)2 + … + (0.37 − 0)2 + (0.35 − 0)2 = 0.20



home team away team pH pD pL hg ag obs
Newcastle Crystal Palace 0.56 0.23 0.21 3 2 H
Norwich Aston Villa 0.39 0.30 0.31 1 1 D
Sheffield Wed Ipswich Town 0.55 0.21 0.24 4 1 H
Southampton Leicester 0.55 0.26 0.19 2 2 D
Tottenham Leeds 0.61 0.18 0.21 1 1 D
West Ham Manchester

United
0.35 0.25 0.40 1 1 D

Wimbledon
FC

Nottingham 0.35 0.22 0.43 2 2 D

We can extend the BS specification from binary forecasts to multi-
category forecasts by introducing the original BS formulation. In this case
we should now evaluate even the draw and the away probabilities and
compute the BS as follows:

(3.10)

where J is the number of categories of the response, j = 1, … , J , pji  is the
forecast probability of the outcome j in the i-th match, and aji  is a dummy
coding for the actual outcome in the i-th match, equals one if event j
happened, zero otherwise.

The above equation for a trivariate outcome as in football then J = 3 and
(3.11) will simplify to

BS(J) =
1

n

n

∑
i=1

J

∑
j=1

(pji − a
j
i)

2,



(3.11)

where p1
i , p2

i  and p3
i  are the probabilities for win, draw and loss of the home

team in i match, respectively, and poii  is the probability of the observed
outcome in i match. Note that for binary variables BS(2) = 2 BS.

We can apply the Brier score in (3.11) for multi-class predictions of the
Premier League results reported in Table 3.2. First of all, we need to
compute the internal sum in Equation (3.11) for each of the eleven matches
considered. For the first match, Chelsea vs Arsenal, we have 
(0.51 − 1)2 + (0.27 − 0)2 + (0.22 − 0)2, whereas for Coventry vs Everton
we have (0.45 − 0)2 + (0.25 − 1)2 + (0.3 − 0)2, and so on for the
remaining matches. The final BS is equal to 0.648 (or 0.324 if you divide it
by two in order to be bounded at one).

In general, how could we assess the prediction accuracy through the
Brier score? As remarked above, the lower the Brier score, the better is the
model's predictive accuracy. We could use an intuitive benchmark in the
following way: if we had used a naive classifier assigning some uniform
probabilities—therefore considering each outcome with equal probability,
0.333—instead of our modelling/individual classifier generating the
probabilities included in Table 3.2, the BS would have been 0.666 (or 0.333
if we consider the half of it in order to be bounded at one), lower, thus
better, than that obtained through individual probabilities. The latter is 2.8%

lower than the BS of a random/naive classified. Thus, a rough measure of
accuracy is represented by the comparison between the probabilistic
predictions obtained with the naive/random classifier.

BS(3) = 1 +
1

n

n

∑
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3
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n
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3.4.4 Ranked probability score

The Ranked Probability Score (RPS) (Epstein, 1969; Winkler, 1969;
Murphy, 1970) measures the difference between the cumulative distribution
function (CDF) of the forecasted probabilities and the CDF of the observed
outcomes. It measures the sum of squared differences in cumulative
probability space for a multi-category probabilistic forecast: therefore, it is
calculated by summing the squared differences between the forecasted
cumulative probabilities and the observed cumulative probabilities for each
possible outcome, across all possible outcomes.

For a generic event with K categories, the RPS is defined as:

(3.12)

where pj is the predicted probability in forecast category j, whereas aj is the
indicator (0=no, 1=yes) for the observation in category j. The RPS in
Equation (3.12) ranges between 0 and 1, with a lower score indicating
better forecasting performance. A score of 0 indicates perfect forecasting,
where the predicted probabilities match the observed probabilities exactly.
A score of 1 indicates a completely inaccurate forecast, where the predicted
probabilities are completely different from the observed probabilities. In
case of binary events, it is straightforward that the RPS is equivalent to the
BS in Equation (3.9).

According to a single football match, the number of categories is K = 3,
which means K − 1 = 2. We could then average the RPS for a single

RPS =
1

n

n

∑
i=1

RPSi with RPSi =
1

J − 1

J

∑
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(
j

∑
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pl −
j

∑
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al)
2

,



match (3.12) over the n matches of interest and obtain then:

(3.13)

where pj is the predicted probability in forecast category j, whereas aj is the
indicator (0=no, 1=yes) for the observation in category j.

RPS has been used in the past for the evaluation of football prediction
models. Constantinou and Fenton (2012b) argue that the RPS is the most
suitable metric for evaluating probabilistic forecasts in football matches.
Consequently, the RPS has emerged as one of the most widely adopted and
popular scoring rules for this application (Wheatcroft, 2021). Schauberger
et al. (2016) used RPS to tune their hyperparameters and achieve maximum
predictive performance. Baboota and Kaur (2019b) used RPS to evaluate
their methods and algorithms or even tune their hyperparameters and
achieve maximum predictive performance.

On the other hand, Wheatcroft (2021) strongly criticized the use of RPS
for evaluating football predictions. He claimed that the reasoning of
Constantinou and Fenton (2012b) in favour of RPS was oversimplistic and
the conclusion questionable. From his experiments, Wheatcroft (2021)
reported that the ignorance score outperformed both the RPS and the Brier
scores with the latter to be better than RPS.

The global RPS in (3.13) ranges from zero and one and maintains the
same interpretation as previously remarked: by applying it to the English
Premier League results reported in Table 3.2, we obtain RPS = 0.158 which
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is about 15.7% lower (better) than the naive/random classifier with
RPS=0.187.

3.4.5 Average of correct probability

Another typical assessment for the probabilistic predictive accuracy is given
by the average of the correct probabilities, namely the average of the
probabilities assigned to the outcomes that actually occurred. Let us denote
this vector of probabilities with p∗

1, p∗
2, … , p∗

n, then the average over the n
matches is given by:

(3.14)

which will be as high as the predictive accuracy is large. Conversely for
what happens with the mean-squared error-based measures of the Brier and
the Ranked Probability scores, this metric approaches 1 when the predictive
accuracy is perfect, and 0 when is completely wrong. In practice, the ACP
will rarely approach the extremes 0 or 1: in general, an ACP value greater
than 0.33 for the single match denotes that the model/subjective
probabilities are better than those suggested by the naive classifier. With
respect to the English Premier League example reported in the previous
sections, the ACP is equal to 0.341, suggesting that the performance is
slightly higher than the random assignment given by the naive classifier.

3.4.6 Pseudo-R2

ACP =
1

n

n

∑
i=1

p∗
i ,



Another common way to assess the probabilistic predictive performance
over a number of matches is the pseudo-R2, defined as the geometric mean
of the probabilities assigned to the actual result of each match played during
the forecasting period (Dobson et al., 2001). By using again the vector of
probabilities p∗

1, p∗
2, … , p∗

n introduced in the previous section, the pseudo-
R2 is given by:

(3.15)

As a matter of interpretation, the psuedo-R2 will be as high as the
probabilities for the outcomes actually observed will be high, approaching 1
when the decision maker place a probability exactly equal to one on the
actual observed results, and zero when he/she places a probability of zero.

In the English Premier League example, the pseudo-R2 is equal to 0.315,
denoting again that the decision maker probabilities are not better than the
uniform probabilities offered by a naive/random classifier.

3.4.7 Measures for assessing predictive performance for
binary outcomes

When we consider binary responses, one of the most widely used
approaches in statistics and machine learning to evaluate the predictive
performance of a model is by constructing the confusion matrix and
extracting various performance metrics from this matrix. The confusion
matrix is a 2 × 2 contingency table that displays the joint distribution of the
actual versus predicted outcomes. It classifies the predictions into four
categories: true positives (TP), true negatives (TN), false positives (FP), and

pseudo-R2 = (p∗
1p

∗
2 … p∗

n)1/n.



false negatives (FN). This structure allows for the assessment of a model's
performance via the calculation of several simple and comprehensive
measures of predictive performance. The format of the confusion matrix is
shown in Table 3.3.

TABLE 3.3
Typical structure of a confusion matrix⏎

Actual Predicted Outcome (Ŷ )
Outcome (Y) No (Ŷ = 0) Yes (Ŷ = 1)

No (Y = 0) n11 (TN) n12 (FP)
Yes (Y = 1) n21 (FN) n22 (TP)

TN: True Negative; FP: False Positive; FN: False Negative; TP: True Positive

More specifically we calculate the key: accuracy, precision, recall
(sensitivity), specificity and the F1 score which are defined as follows.

3.4.7.1 Accuracy

Accuracy measure quantifies the proportion of correct predictions of our
model and mathematically is given by the formulae:

(3.16)

Accuracy = Pr(Correct Predictions) =
Number of correct prediction

Total number of observation

=
TP + TN

n
=

n11 + n22

n
.



Accuracy is sometimes referred to as the proportion of “agreement”
between predicted and actual values. However, a key disadvantage of this
measure is that it can be severely influenced by the dominant category in
imbalanced datasets, where this category will severely influence the overall
accuracy score.

3.4.7.2 Precision or Positive Predictive Value

Precision estimates the probability of the true prediction given that a test or
prediction is positive. In statistics and biostatistics it is called Positive
Predictive Value (PPV). In this context, PPV/precision is used to describe
the accuracy of diagnostic tests in when a test is positive. It is given by

where n∙2 = n12 + n22.

3.4.7.3 Sensitivity or recall

Sensitivity (also known as Recall in machine learning) is the proportion of
correct prediction among the actual positive values and estimated the
corresponding conditional probability of finding the truth among actual
positive values.

Precision = Pr(Correct Predictions|Positive Prediction) =
TP

TP + FP

Sensitivity (Recall) = Pr(Correct Prediction|Positive ) =
TP

TP + FN
=



where n2∙ = n21 + n22. Although in most cases we wish to calculate the
Positive Predictive Value (PPV or Precision) or the corresponding Negative
Predictive Value (NPV) since it a more useful measure this is not always
feasible, particularly in biostatistics. The reason for this is that its
calculation requires analyzing two groups: one for positively predicted
individuals and one for negatively predicted individuals and In medical
research, especially when dealing with relatively rare diseases, the
positively predicted individuals (numerator in PPV/precision) is often very
low due to the small prevalence of the disease. Therefore, a prospective
study to collect data of this type would require a long time to gather a
sufficient number of positively predicted data. On the other hand, sensitivity
can be more obtained in a straightforward manner through a retrospective
case-control study. Specifically, the data for the case (disease) group, which
is harder to be found in the general population, are directly collected from
hospitals (where these cases are reported), making the calculation of
sensitivity feasible and easy. In predictive models, this option (increasing
the case group) is not available, so using either sensitivity/recall or
precision/PPV becomes equally valuable depending on the interpretation
we seek in every problem.

3.4.7.4 Specificity

Specificity is given by the proportion of true negatives over all actual
negative values and estimates the probability of predicting the truth given a
negative response. It is paired with specificity and is used instead of the
Negative Predictive Value (NPV) in order to be calculated from
retrospective case-control studies. It is given by



where n1∙ = n11 + n12.

3.4.7.5 F1 score

F1 score combines the Precision (PPV) and recall (sensitivity) by
considering their geometric mean. Hence, it provides a single metric that
balances the trade-off between these two measures. It is particularly useful
when there is an uneven class distribution or when both false positives and
false negatives are important to consider. It is given by

3.4.7.6 Summary for predictive measures

To conclude with, the accuracy offers a more basic, naive sometimes,
approach to quantifying the efficiency of the model without considering any
possible (and usually common) imbalance between the two predicted
categories. Precision focuses more in the probability of identifying the truth
among positive outcomes while sensitivity and specificity provide a more
detailed picture of the model's effectiveness for both positive and negative
responses.

3.4.7.7 Implementation in football

Specificity = Pr(Correct Prediction|True Negative) =
TN

TN + FP
=

n

n

F1 Score = [ 1

2
( 1

Precision
+

1

Recall
)]

−1

= 2 ×
Precision ×  Recall

Precision + Recall
.



The implementation of these measures in football, where the number of
final outcome categories are three instead of two, is not straightforward. In
this occasion the confusion table will take the form of Table 3.4.

TABLE 3.4
Typical structure of a confusion matrix in football⏎

Predicted Outcome (Ŷ )

Actual
Home
wins Draw

Home
looses

Outcome Y (Ŷ = 1)
(Ŷ = 2

) (Ŷ = 3)
Home wins Y = 1 n11 n12 n13

Draw Y = 2 n21 n22 n23

Home
looses

Y = 3 n31 n32 n33

There is one obvious approach to deal with the problem that in football
we have three categories instead of two. One could ignore the draws and
focus solely on the comparison between winning and losing games (from
the perspective of the home team); however, this approach would fail to
identify the model's poor prediction performance for draws. This can be
complemented by a second set of predictive measures that focus on draws
versus the other two outcomes. The problem with considering this
additional set of predictive measures is that we do not have a single unified
value for each measure making difficult to reach an overall conclusion or
compare alternative predictive methods or models. Summary statistics, such
as the mean of the two measures, can be considered, but we believe this is
not good practice. The authors prefer to use Cohen's Kappa to estimate the



agreement between different measurements or judges, which is appropriate
for multicategory outcomes and is described in Section 3.4.8, which
follows.

3.4.8 Cohen's Kappa for measuring agreement

Cohen's (1960) Kappa is a statistical measure used to evaluate the level of
agreement between two raters (or judges) when classifying items into
categories. It can be applied to both binary and multicategorical variables
and is also useful for comparing actual and predicted outcomes, where the
truth and predicted classifications play the role of ratings obtained by
different raters or judges. It can be used as a substitute for the accuracy
measure, which provides the proportion of agreement between actual and
predicted outcomes but in a raw, unfiltered manner. The key difference with
Kappa is that it adjusts for the agreement that could occur by chance,
assuming independence between the two raters. Thus, unlike accuracy,
which simply measures the proportion of agreement, Cohen's Kappa
accounts for the possibility of random agreement, offering a more reliable
metric for evaluating the predictive performance of a model.

Mathematically, κ will be calculated from a confusion matrix similar to
3.4. Hence, for an response variable with K categories, Cohen's Kappa (κ) is
given as:

where Po = Accuracy is the observed agreement portion, and Pe is the
expected agreement by chance (under the assumption of independence

κ =
Po − Pe

1 − Pe

,  where Po =
1

n
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between actual and predicted outcomes), which is computed based on the
marginal frequencies of the actual (nj∙ for j = 1, … , J) and predicted (n∙j

for j = 1, … , J) outcomes. Hence, we can rewrite κ as

Concerning the interpretation of the values of kappa, it is clear that for 
κ = 1 then we have a method with perfect prediction, for κ = 0 then we
have random prediction (similar to selection randomly the predicted
outcome) and for κ < 0 then we have prediction which is even worse than
random prediction. prediction In terms of scale, following the empirical
characterization suggested by Landis and Koch (1977), for values lower
than zero we have prediction worse than pure chance, for values between 0
and 0.2 we have low predictive performance, for values between 0.21 and
0.4 fair predictability, for values in 0.41–0.6 moderate predictability, for
values in 9.61–0.8 substantial predictability and for values greater than 0.81
almost perfect predictive performance.

Cohen's Kappa provides a robust measure for raters agreement and inter-
rater reliability that can be also used to measure the predictive ability of a
method or a model by measuring the agreement between the predicted and
the actual outcomes. It can be directly used for the 3 × 3 confusion matrix
(see Table 3.4) obtained in football. It accounts for the random agreement or
predictability. It is particularly valuable when evaluating the predictive
performance of a model when the response outcome is a categorical
variable with multiple categorical outcomes and in football.

κ =
Accuracy − Pe

1 − Pe

= 1 −
1 − Accuracy

1 − Pe

.



3.5 Summary and closing remarks of Chapter 3

This chapter presented in detail the computational methods and model
needed for tournament and game prediction, emphasizing simulation-based
approaches and their practical applications in sports analytics.

We presented the use of predictive models for individual games,
leveraging point estimates, bootstrap methods, and Bayesian approaches via
MCMC. These techniques enable the generation of game scores, outcomes,
and probabilities with varying degrees of precision and computational
demand.

Monte Carlo simulations, both plug-in and bootstrap-based, are
highlighted for their flexibility in regenerating leagues or tournaments. This
approach facilitates an evaluation of model performance and provides a
robust framework for exploring league scenarios and rankings. Similarly,
Bayesian prediction methods, using posterior distributions, offer a
probabilistic framework for quantifying uncertainties and enhancing
predictive accuracy.

The chapter also examines league and tournament prediction scenarios,
focusing on round-robin and hybrid formats. Predictive methodologies are
tailored to specific challenges, such as mid-season forecasts and knock-out
phase simulations. These scenarios illustrate the adaptability of statistical
and computational tools in addressing diverse tournament structures and
phases.

Performance assessment metrics, such as RMSE, MAE, and Brier scores,
are introduced to evaluate the goodness-of-fit and predictive capabilities of
models. The inclusion of ranked probability scores and pseudo-R2 further
strengthens the toolkit for assessing model accuracy and calibration. These
measures underscore the importance of not just fitting the data but also
ensuring out-of-sample predictive reliability.



Although the methods presented in this chapter provide a holistic
framework for predictive modelling in sports tournaments, several
opportunities for advancement remain. Incorporating dynamic covariates,
such as player injuries, team strategies, or real-time form changes, could
enhance model relevance. Additionally, integrating machine learning
techniques with traditional statistical methods may yield superior predictive
capabilities.

Future research could explore extending these methodologies to other
sports or domains requiring sequential or hierarchical decision-making.
Expanding simulation techniques to account for evolving tournament
formats and incorporating real-time updates would further broaden the
applicability of these models.

In summary, this chapter not only highlighted the current state of
statistical modelling in tournament predictions but also set a clear pathway
for future advancements. By combining robust methodologies with
innovative applications, these models can continue to improve predictive
accuracy and decision-making in sports analytics.

Next chapter moves to the implementation of basic models using the
footbayes package providing a solid guidance of implementation to
football data for the practitioner.

Appendix: Notation

Indexes and basic constants



n: Number of games in the league/dataset

K: Number of teams in the league/dataset

T: Number of weeks in the league/dataset

J: Number of levels/categories in a categorical variable; J = 3 for
football match outcome.

i ∈ {1, … ,n}: Observation/game index for game-arranged data

ℓ ∈ {1, 2}: Index denoting the home or away team for values one or two,
respectively (for game-arranged data)

k ∈ {1, … ,K}: Team index

w ∈ {1, … ,W}: Week index

ı: observation index for univariate-arranged data with ı = 2i − 2 − ℓ

t ∈ {1, … ,T}: Monte Carlo iteration index/superscript

j ∈ {1, … , J}: level/category index for a categorical variable

Model parameters

θi1, θi2: parameter vectors for home and away teams

ρi: dependence parameter between home and away goals

μ: constant parameter in the vanilla model

home: home effect parameter

attk, defk: Fixed attacking and defensive parameter of k team



attk,t, defk,t: Dynamic/random attacking and defensive parameter of k
team at week t

σ2
a and σ2

d: random abilities variances

β
(ℓ)
j : effect of covariate j of home (ℓ = 1) or away team (ℓ = 2)

Variables and data for game-arranged data

Yi1,Yi2: goals of the home and away team for game i

Zi = Yi1 − Yi2: goal difference for game i

Ωi: Outcome of i game with three possible values: –1:home win, 2:draw,
3:away win; Ωi = I (Zi > 0) + 2I (Zi = 0) + 3I (Zi < 0).

Oi = 2 − Ωi: Outcome of i game with three possible values: -1: away
win, 0: draw, 1:home win.

λiℓ: Expected goals (in Poisson) of the home and away team for game i

ηiℓ: Predictor of the home and away team for game i

X
(ℓ)
ij , x(ℓ)

ij : Covariates/Features for the home or away team

Variables and data for univariate-arranged data

Yı: goals scored in ı observation of +++ data; Note that ı = 2i − 2 − ℓ

hence Yı refers to the goals scored by the home team (ℓ = 1) or the away
team (ℓ = 2) in game i



HTı, ATı: covariates denoting the home and away teams

Homeı: dummy variable denoting if the goals Yı were scored by a home
team

X
(ℓ)
ıj : Covariates/Features for the scoring team (ℓ = 1) of Yı or the

opponent team (ℓ = 2) which receives the goals Yı

Attı: attacking team which scores Yı goals

Defı: defending team which receives Yı goals



4
Implementation of basic models in R
via footBayes

DOI: 10.1201/9781003186496-4

4.1 The installation of the footBayes package

Before starting with its functionalities, the footBayes R package (version
1.0.0) should be installed from the CRAN public repository
(https://CRAN.R-project.org/package=footBayes) as explained in Code
Snippet 6.

Code Snippet 6 footBayes package installation.

install.packages("footBayes")

library(footBayes)

Alternatively, the installation of the package is available also from the
GitHub platform—nowadays, this source represents a standard practice for
the release and the dissemination of R packages—through the following
instructions in Code Snippet 7.

https://doi.org/10.1201/9781003186496-4
https://cran.r-project.org/package=footBayes


Code Snippet 7 footBayes package installation via GitHub. ⏎

library(devtools) # required

install_github("leoegidi/footBayes")

In order to familiarize with its extended use and appreciate the main
functionalities, A thorough vignette accompanying the use of the package is
available from the official CRAN package page at the link: https://cran.r-
project.org/web/packages/footBayes/vignettes/footBayes_a_rapid_guide.ht
ml. To effectively use footBayes there is no need of any prior installation
of other related packages; however, as explained in the next sections, the
package strongly relies on the libraries/packages: rstan (Stan Development
Team, 2022), which implements a robust Hamiltonian Monte Carlo (HMC)
sampling (Betancourt, 2017) enginery within a Bayesian approach—for
further details, see Chapter 2, Section 2.5.1.3—ggplot2, and dplyr.

4.2 Available models

The footBayes package is an encompassing modelling protocol that
supports the fit of the following models for the number of goals/scores:

double Poisson

bivariate Poisson

diagonal-inflated bivariate Poisson,

and these other models for the goal difference:

– Skellam

https://cran.r-project.org/web/packages/footBayes/vignettes/footBayes_a_rapid_guide.html


– zero-inflated Skellam

– student-t.

All these models allow a static and a dynamic fit—see Section 4.5.2 for
further details—however, static models can be estimated according to either
maximum likelihood (MLE) or Bayesian HMC methods, whereas dynamic
estimation is available through HMC only.

4.3 Basic syntax and functions

footBayes is a very immediate and user-friendly R package designed to fit
the most well-known football statistical models by typing just one line of
code.

There are two main “fitting” functions:

stan_foot(data, model, predict, ranking, dynamic_type, prior_par,
home_effect): provides a “stanFoot” class object through Bayesian
estimation based on the Stan ecosystem and Hamiltonian Monte Carlo
(HMC) sampling. data should be a data-matrix or a data-frame
containing the following mandatory items; periods, home_team,
away_team, home_goals, away_goals. The user must be aware that a
wrong inclusion, or a wrong permutation, of the quantities mentioned
above cannot be restored by any of the other function options: thus, we
suggest the user to double check the data before giving them as input for
the fitting function. The model can be one among “double_pois”,
“biv_pois”, “diag_infl_biv_pois”, “skellam”, ”zero_infl_skellam” and
“student_t”. predict is an optional argument to specify the number of
test-set/out-of-sample/held-out matches (if omitted, the test-set size is



zero, and all the matches of the dataset are used to train the model).
ranking is an optional “btdFoot” class argument or a data frame
containing ranking points for teams with the following columns:
periods, the time periods corresponding to the rankings (integer ≥ 1);
team, the team names matching those in data (character string); and
rank_points, the ranking points for each team (numeric). As an example
for rankings, one could consider for instance the Coca-Cola rankings 1

typically adopted for the national teams in international competitions,
such as the Euro or the World Cup. The user can specify to fit a dynamic
model through the dynamic_type argument, whose possible choices are
“weekly” and “seasonal”. The user should be aware that the
computational times arising from the two dynamic choices can be
dramatically different: in fact, fitting weekly strengths' parameters,
basically a batch for each of a league match day, is much more expensive
than fitting a batch of seasonal parameters, one for each of the considered
seasons. If dynamic_type is omitted, a static fit for the selected model is
provided. Then, the user can specify different prior distributions' options
through the argument prior_par, a list specifying the probability
distributions for the parameters of interest, such as the team-specific
abilities (ability), team-specific standard deviations (ability_sd), and
home-effect (home). The possible choices for the team-specific abilities
are “normal”, “student_t”, “cauchy”, “laplace”, analogously as the
distribution names in the rstanarm package. Finally, the argument
home_effect allows to specify a home-effect parameter, which is
common in football modelling: by default this argument is set to “TRUE”
for domestic national leagues, such as the Serie A, the Premier League,
etc., however the user could set the argument to “FALSE”, plausible
when neither of the competing teams plays at its home stadium, as



usually happens in international competitions such as Euro, World, or
America's cups. Optional arguments related to the HMC sampling can be
passed through a list, such as the number of HMC iterations (iter), or the
number of Markov chains (chains). We refer the user to the stan
function of the rstan library for further optional details.

mle_foot(data, model, predict, …): provides a “list” class object
through maximum likelihood estimation, allowed for static models only.
For the arguments data and predict we refer the user to the stan_foot
function. For the argument model, the possible models are
“double_pois”, “biv_pois”, “skellam”, and “student_t”. The user is then
free to add some optional arguments for the maximum likelihood
computation, such as the desired confidence intervals: interval =
“profile” is the default option to calculate profile-likelihood confidence
intervals, whereas interval = “Wald” can be specified to calculate Wald-
type confidence intervals. Through the argument hessian = “TRUE” the
user can obtain the computation of the Hessian matrix during the
optimization procedure (default is “FALSE”). The argument method can
be used to select one among the available optimization algorithms as
provided by the base R function optim: by default, method = “BFGS”,
the quasi-Newton algorithm is chosen.

NOTE: this function will be deprecated in future versions of the current
package, when the incorporation of the CmdStan software (Gabry et al.,
2024)—a wrapping Stan ecosystem—will allow to fit a single model
written in Stan's syntax according to different algorithms, such as HMC,
MLE, penalized likelihood, variational inference methods, Laplace's
approximation.

_________________



 1https://www.fifa.com/fifa-world-ranking

Once the model has been fitted, the user may accomplish different tasks
related to the following steps:

Teams' abilities visualization: foot_abilities(object, data, type, teams)
depicts the estimated attack and defence abilities along with a
confidence/credible interval for both static and dynamic Poisson-based
models. Red curves denote the attacking strengths, whereas blue curves
denote the defensive strengths. The function yields some global ability
measures for student-t models along with confidence/credible intervals—
see Section 5.1.4 in Chapter 5. object is the fitted model object as
estimated by either mle_foot or stan_foot; data is the original dataset;
type is one among the following choices: c(“attack”, “defense”,
“both”), where by default “both” is selected. Finally, teams is a vector or
a single string of valid team names for which the strength's estimates
should be plotted.

model checking: pp_foot(data, object, type, coverage) depicts two
types of posterior-predictive checks (Gelman et al., 2013). type =
“aggregated” returns a cloud-plot where for each observed frequency of
the goal difference {−3, −2, −1, 0, 1, 1, 2} the overlapped posterior-
predictive distribution is depicted (default option). When type =
“matches” is selected, the ordered goal differences for all the matches
are displayed against the goal differences replicated from the posterior
predictive distribution. The argument coverage controls the desired
width of the credibility intervals when the argument type = “matches” is
selected, and by default coverage = 0.95.

prediction for future matches: foot_prob(data, object, home_team,
away_team and foot_round_robin(data, object, teams) depict

https://www.fifa.com/fifa-world-ranking


posterior predictive probabilities for a football season in a chessboard-
plot and in a round-robin format, respectively, if the argument predict in
the stan_foot function is explicitly specified (integer ≥ 0). The first
function also provides a table for the home, draw and away winning
probabilities. foot_rank(data, object, teams, visualize) yields rank-
league reconstruction plots for in-sample matches or for out-of-sample
matches. The user can choose among visualize = “aggregated” for a
unique aggregated plot with credibility intervals for the final number of
cumulated points, or visualize = “individual” to obtain the cumulated
points for each team separately. We warn the user that these functions
work only by passing a “stanFoot” object.

Ranking estimation via Bradley-Terry-Davidson models: btd_foot(data,
dynamic_rank, home_effect, prior_par, rank_measure) fits a
Bayesian Bradley-Terry-Davidson model (Bradley and Terry, 1952;
Davidson, 1970)—see Chapter 1, Section 1.4 for further details— using
the underlying Stan ecosystem, and supports both static and dynamic
ranking models, allowing for the estimation of team strengths over time.
As for the stan_foot function, the user can choose a dynamic estimation
(dynamic_rank) and whether including an home effect parameter
(home_effect); through the argument prior_par one may specify the
prior distributions for: the team log-strengths (logStrength), the tie
parameter (logTie), and the home-effect parameter (home), which is set
to “FALSE” by default. rank_measure is a character string specifying
the method used to summarize the posterior distributions of the team
strengths, with one among “median”, “mean”, or “map”. An object of
the class “btdFoot” can also be given as an input for the ranking
argument of stan_foot when a ranking covariate is desired. Thus, this



function could be also used before launching the estimation procedure
through stan_foot.

4.4 Basic models in footBayes

4.4.1 Double Poisson

As explained in Chapter 2, Sections 2.1.1–2.1.2, many scholars in the
literature assume that the number of goals scored by each team follows a
Poisson distribution (Maher, 1982; Lee, 1997; Rue and Salvesen, 2000;
Baio and Blangiardo, 2010; Groll and Abedieh, 2013; Egidi et al., 2018b).
Mathematically speaking, the joint distribution for the pair (Y1,Y2) is then
given by the product of two Poisson probability functions:

(4.1)

with means λ1 and λ2.

4.4.1.1 Model specification

To specify a proper statistical model, one could assume that the pair of
random goals (Yi1,Yi2) is modelled as two conditionally independent
Poisson random variables, for the i-th match, i ∈ {1, … ,n}. Analogously

fY1,Y2(y1, y2) = Pr(Y1 = y1,Y2 = y2) =

 
λ
y1

1 exp{−λ1}

y1!

λ
y2

2 exp{−λ2}

y2!
,



as in Equations (2.2) and (2.3), the double Poisson vanilla model takes then
the general form:

(4.2)

where λi1,λi2 represent the scoring rates, i.e. the expected number of goals
for the home and away team, respectively; the parameters attk and defk
encapsulate the offensive (or attacking) and defensive performances of team
k, respectively, for each team k, k ∈ {1, … ,K}; the nested indexes 
hi, ai = 1, … ,K denote the home and the away team playing in the i-th
game, respectively; μ represents a constant parameter; home represents the
home-effect, i.e. the well-known advantage of the team hosting the game.
As a matter of interpretation, suppose that two teams of approximately
equal strengths, with the further characteristic that the offensive ability of
one team equals in absolute value the defensive ability of the opposing
team, play one against the other, which means that 
atthi

+ defai ≈ attai + defhi
≈ 0; in such a case, the scoring rates in (4.2)

are then influenced by the parameters μ and home only: if we provide some
estimates for μ and home say equal to 0.2 and 0.34, the expected number of
goals for the two competing teams will be approximately given by 
λ̂i1 = exp{0.2 + 0.34} ≈ 1.72 and λ̂i2 = exp{0.2} = 1.22, respectively.

As suggested by Maher (1982) and Dixon and Coles (1997), a
comfortable reparameterization for the log-linear scores in (4.2) is given by:

Yi1|λi1 ∼ Poisson(λi1),

Yi2|λi2 ∼ Poisson(λi2),

log(λi1) = μ + home + atthi
+ defai ,

log(λi2) = μ + attai + defhi
,



(4.3)

where δ = exp{μ}, γ = exp{home}, αhi
= exp{atthi

}, 
βhi

= exp{defhi
}, αai = exp{attai}, and βai = exp{defai}. The

likelihood for the model (4.2) takes then the following form:

(4.4)

The log-likelihood is then:

(4.5)

The model (4.2) has 2K + 2 parameters. We note that many references in
the literature do not explicitly include a constant intercept μ in the log-linear
models for λi1 and λi2. However, the inclusion of μ, despite not mandatory,

λi1 = δγαhi
βai

λi2 = δαaiβhi
,

L (α, β, γ, δ; y1, y2) =
n

∏
i=1

λ
yi1
i1 exp{−λi1}λyi2

i2 exp{−λi2}

=
n

∏
i=1

(δγαhi
βai)

yi1 exp{−(δγαhi
βai)}×

  (δαaiβhi
)yi2 exp{−(δαaiβhi

)}.

ℓ(α,β, γ, δ; y1, y2) =
n

∑
i=1

yi1 log(δγαhi
βai) − δγαhi

βai+

  yi2 log(δαaiβhi
) − δαaiβhi

.



is needed for identifiability purposes. In fact, assume that two
approximately equal teams, as those considered above, play on a neutral
pitch—this is the typical case occurring in World,
Euro/Africa/America/Asia Cups, as remarked in Chapter 6 of this book—
which means that the home-effect is set equal to zero. Then, we assume
again that the offensive and defensive estimated skills compensate one each
other, being atthi

+ defai ≈ attai + defhi
≈ 0. In this scenario, the overall

intercept μ completely specifies λi1 and λi2: by removing this parameter we
would get in fact log(λi1) ≈ log(λi2) = 0, then λi1 ≈ λi2 ≈ 1, which
would make the resulting model non-identifiable. Moreover, in such
scenarios where two teams are almost equal and with compensating skills,
removing the common intercept μ has a direct implication: the draw 0-0
cannot occur, and this is not realistic in football, where 0-0 is the starting
result and is not uncommon as the final result at all, especially in domestic
leagues, such as the Italian Serie A, characterized by a low amount of
scores.

Many variants and extensions of the general vanilla model form (4.2)
have been proposed in the literature. Moreover, many computational
methods are available to fit the model and provide reliable parameters'
estimates, such as MLE and Bayesian methods.

4.4.1.2 The first Poisson-based model: Maher (1982)

Maher (1982), one of the first and more influential references for the
modern football modelling focused on the Poisson distribution, is a
particular case of model (4.2), with μ = home = 0. The first version of the
Maher's model allowed for distinct offensive and defensive parameters
depending on whether the teams played at home or away, for a total of 
4 × K model parameters; however, some goodness-of-fit checks drove the



conclusion that distinct attacking and defensive abilities when playing at
home and away were unnecessary, and for this reason the number of
offensive/defensive parameters in the general vanilla model (4.2) is usually
set to 2 × K. One of the main novelties of the Maher's formulation regards
the maximum likelihood parameters' estimation through Newton-Raphson
iterative methods. According to the likelihood specification in Equations
(4.5), one could get the MLEs for the home offensive/defensive parameters
as follows:

(4.6)

and an analogous procedure may be used for α̂ai , β̂ai .

4.4.1.3 The Bayesian variant: Baio and Blangiardo (2010)

The double Poisson model proposed by Baio and Blangiardo (2010) is
basically the same as in (4.2), except for the fact that μ = 0. Moreover, the
authors provide a Bayesian estimation procedure by eliciting some
noninformative prior distributions for the model's parameters. The home-
effect parameter home is modelled as a fixed effect and assigned a wildly
noninformative prior distribution, whereas team-specific parameters are
considered as exchangeable from a common distribution governed by
group-level hyperparameters σ2

att and σ2
def :

α̂k =
∑i:hi=k yi1

∑i:ai≠k γ̂δ̂β̂i

,   β̂k =
∑i:hi=k yi2

∑i:ai≠k δ̂α̂i

,



(4.7)

where N(μ,σ2) denotes as usual a Gaussian distribution with mean μ and
variance σ2—or standard deviation σ. σhome is set to 104 by the authors. The
model's hyperparameters are then assigned some noninformative priors:

(4.8)

where invGamma(α,β) denotes an inverse Gamma distribution with shape
parameter α and rate parameter β. Alternatively, in line with Gelman
(2006), a more popular prior distribution for the team-specific standard
deviations is represented by:

(4.9)

where Cauchy+ denotes the half-Cauchy distribution with support [0, +∞).
NOTE: the default prior distributions for the group-level standard

deviations supported by the footBayes package are given by those in
Equation (4.9).

home ∼ N(0,σ2
home),

attk ∼ N(μatt,σ
2
 att),

defk ∼ N(μdef ,σ
2
 def),

μatt,μdef ∼ N(0, 108),

σatt,σdef ∼  invGamma(0.1, 0.1),

σatt,σdef ∼ Cauchy+(0, 5),



Posterior parameters estimates from the joint posterior distributions of
the parameters are computed by use of Markov Chain Monte Carlo methods
(MCMC) (Robert and Casella, 2013), specifically through the Gibbs
sampling algorithm and the WinBUGS software (Lunn et al., 2000) (Geman
and Geman, 1984b)—see Chapter 2, Section 2.5.1.2. A possible concern in
the model above is the large amount of shrinkage caused by the Gaussian
priors in (4.7): the Bayesian model above is likely to shrink the attack and
the defence abilities towards their prior grand means μatt,μdef , being then
not able to discern between good, intermediate, and poor teams. For such a
reason, the authors propose to use in place of (4.7) a mixture consisting of
three non-central student-t distributions in order to account for three
possible latent categories of the teams (low, medium, high).

4.4.1.4 Model's parameter constraints and interpretation

To achieve global model's identifiability (Gelman and Hill, 2006) in
Equation (4.2), we need to impose some constraints, the so-called “sum-to-
zero” (STZ) identifiability constraints for the attacking and defensive
parameters, as explained in Baio and Blangiardo (2010):

(4.10)

To accomplish with the condition in (4.10), as remarked in Chapter 2 Karlis
and Ntzoufras (2003) one could assume the “corner constraint” that the
abilities for the first team are equal to the negative sum of the K − 1

residual abilities:

K

∑
k=1

attk =
K

∑
k=1

defk = 0.



(4.11)

Baio and Blangiardo (2010) suggest to use an alternative parametrization,
the “centered constraint” by introducing some auxiliary parameters 
att∗

k, def∗
k such that:

(4.12)

where att and def represent the averages of the offensive and defensive
parameters skills across the K teams. It is easy to check that the “new” att
and def in Equation (4.12) satisfy the general condition expressed in
Equation (4.10).

Furthermore, another “corner” STZ constraint to guarantee the general
condition in (4.10) is suggested by the same authors by imposing a baseline
team whose abilities are set to zero, with the residual teams abilities
incremental with respect to the baseline team:

(4.13)

att1 = −
K

∑
k=2

attk,  def1 = −
K

∑
k=2

defk.

attk = att∗
k − att

defk = def∗
k − def,

–

–

––

att1 = 0,  def1 = 0
K

∑
k=2

attk = 0,  
K

∑
k=2

defk = 0.



Alternatively, Dixon and Coles (1997) propose a similar constraint based on
the reparameterization (4.3)

(4.14)

The choice between alternative constraints is mainly due to interpretation
issues. Corner constraints can be faster to run than other STZ constraints
from a computational perspective; however, the interpretation of the
resulting coefficients may appear less intuitive, being made with respect to
the baseline team associated with “fixed” attacking and defensive strengths.

4.4.1.5 Implementation in footBayes

In footBayes the user can fit a vanilla double Poisson model, either by
adopting the maximum likelihood or the Bayesian estimation approach, via
the following code in Code Snippet 8 by using the italy data contained in
the package, just specifying the data and the model.

Code Snippet 8 Double Poisson model in footBayes. ⏎

## Some data

data(italy) # available in the package

italy_2009 <- subset(italy[, c(2,3,4,6,7)], Season =="2009")

colnames(italy_2009) <- c("periods", "home_team", 

"away_team",

K−1
K

∑
k=1

αk = 1,   K−1
K

∑
k=1

βk = 1.



                          "home_goals", "away_goals") # 

rename columns

 

## MLE fit

dp_mle <- mle_foot(data = italy_2009,

                   model= "double_pois")

 

## Bayesian fit

dp_stan <- stan_foot(data = italy_2009,

                     model="double_pois")

4.4.2 Bivariate Poisson

One of the main concerns with the double Poisson model (4.2) relies on the
fact that the assumption of (conditional) independence between the goals
scored during a match by two competing teams could be unrealistic (see
Section 2.8.1 in Chapter 2 for some foundational details). In team sports of
invasion such as football, water-polo, handball, hockey, and basketball,
where the objective is to invade the opponent's territory and to score a goal
or a point, it is reasonable to assume that the two outcome variables are
correlated since the two teams interact during the game. To visualize this
natural correlation, consider, for instance, the realistic football scenario of
the home team leading 1-0, when only ten minutes are left to play: the away
team may then become more determined and produce many efforts to score
in order to equalize within the end of the match. Or, as another realistic
situation, consider when the home team leads with a large margin, say, 3-0,
or 4-0: it is plausible its players will be relaxing a bit, not forcing for
another score, while the opponent team could take advantage of this



relaxation to score at least one goal. To this aim, a positive goal correlation
due to a change in the behaviour of the team, or both the teams, could be
captured by a further parameter in the modelling specification. Although the
assumption of positive correlation between the goals is widely accepted for
national and domestic leagues, such as Serie A, La Liga, Premier League,
and so on, it may be questionable for matches between national teams, such
as the Euro/World Cup qualifiers. We need in fact to note that in such
frameworks it is not unusual that a small national team such as San Marino
plays against some of the strongest and traditional football national teams,
such as Germany or England, according to a round-robin format. In these
matches, the scores arising during a match could be observed under
negative correlation: in simple words, the more goals are scored by
England, and the smaller is the probability for San Marino to score. To get a
clue of this scenario, we invite the interested reader to focus his/her
attention to the match San Marino-England, played on November 17th,
1993 in San Marino and valid for the World qualifiers for USA ’94. The
English team needed to win with a margin of seven goals or more and at the
same time hope for the defeat of the Dutch national team against Poland.
However…San Marino scored after eight seconds!—and the scorer, Davide
Gualtieri, became a local hero2. In some sense, the goal scored by San
Marino pushed the English team to score and score more goals, and this is
in support of positive correlation; however, every goal scored by England—
the match finished 7-1 for England—somehow diminished the possibility of
other goals for San Marino, which was already “satisfied” for one of the
fastest and most incredible goals in the international football history. In
these scenarios, where a negative correlation could be realistic, assuming a
copula-based model as in McHale and Scarf (2011b) in place of a full
parametric model could be a suitable choice.



In this section we explain how capturing a positive correlation between
the number of the goals scored by two opponents: the two outcome
variables follow a bivariate Poisson distribution (Kocherlakota and
Kocherlakota, 2017), such that the marginal distributions of the scores are
still Poisson, but the random variables are now dependent. Before
introducing a proper football model in order to generalize the double
Poisson model (4.2), we give the general definition of the bivariate Poisson
distribution.

Consider random variables Xr, r = 1, 2, 3, which follow independent
Poisson distributions with parameters λr > 0. Then, the random variables 
Y1 = X1 + X3 and Y2 = X2 + X3 jointly follow jointly a bivariate
Poisson distribution BP(λ1,λ2,λ3), with joint probability function given
by

Marginally each random variable follows a Poisson distribution with 
E(Y1) = λ1 + λ3,  E(Y2) = λ2 + λ3, and cov(Y1,Y2) = λ3; λ3 acts then
as a measure of dependence between the goals scored by the two competing
teams. If λ3 = 0 then the two variables are conditionally independent and
the bivariate Poisson distribution reduces to the product of two independent
Poisson distributions, the double Poisson model (4.2). For a comprehensive
treatment of the bivariate Poisson distribution and its multivariate

(4.15)

fY1,Y2
(y1, y2) = Pr(Y1 = y1,Y2 = y2)

= exp{−(λ1 + λ2 + λ3)}
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extensions see Kocherlakota and Kocherlakota (2017) and Johnson et al.
(1997).

_________________

 2https://www.youtube.com/watch?v=y4L38WmFuZo

Due to its flexibility, the bivariate Poisson distribution is then particularly
appealing for modelling dependence in team sports: in terms of global
interpretation, λ1 and λ2 represent, as for the double Poisson model, the
“net” scoring strengths for each team, whereas λ3 reflects game conditions,
such as the speed of the game, the weather, the climate, the stadium, and so
on. As suggested by Koopman and Lit (2015, 2019a), a higher λ3 leads
typically to a higher number of equal observations (Y1 = Y2) which for a
football match is a draw. Maher (1982) argued that a match does not consist
of two independent processes for the number of the scores, and found some
estimates for λ3 according to some frequentist goodness-of-fit tests. Also
Dixon and Coles (1997) proposed an extension of the basic double Poisson
model to capture scores' dependence and draw inflation—we refer to the
next section for a quick illustration of their procedure. Karlis and Ntzoufras
(2003) proposed a thorough specification of a bivariate Poisson model for
the number of goals scored by the home and the away team and make use of
the EM algorithm to obtain maximum likelihood parameter estimates.

4.4.2.1 Model specification

Then, the general form of a bivariate Poisson model takes the following
form:

(Yi1,Yi2|λi1,λi2,λi3) ∼ BP(λi1,λi2,λi3)

log(λi1) = μ + home + atthi
+ defai ,

log(λi2) = μ + attai + defhi
,

https://www.youtube.com/watch?v=y4L38WmFuZo


(4.16)

where the specification for the log-linear scores is the same as in (4.2). For
the covariance parameters λi3 one may assume various versions of the
linear predictor, we propose here the general form:

(4.17)

where ψ0 is a constant parameter, ψhi
 and ψai  are parameters that depend on

the home and away team respectively, Ui is a vector of covariates for the i-
th match used to model the covariance term, and η is the corresponding
vector of regression coefficients. The parameters ω1,ω2, and ω3 are dummy
binary indicators taking values 0 or 1 that are able to “activate” distinct
sources of the linear predictor. Hence, when ω1 = ω2 = ω3 = 0 we
consider constant covariance, whereas when (ω1,ω2,ω3) = (1, 1, 0) we
assume that the covariance depends on the teams' parameters only, but not
on further match covariates. According to the formulation in (4.17), the
parameter λi3 can be interpreted as a random effect which acts additively on
the marginal means and reflects game conditions.

The interpretation of the bivariate Poisson model in Equation (4.16) is
similar to the double Poisson model in (4.2), except for the fact that an
explicit positive correlation between the teams' scores is now introduced by
(4.17). The influence of this parameter on the other estimated parameters
will be broadly investigated in Section 4.5. To achieve model identifiability
for (4.16), the same STZ constraints proposed for the double Poisson model

log(λi3) = ψ0 + ω1ψhi
+ ω2ψai + ω3ηUi,



in Section 4.4.1.4 could be applied for the offensive and defensive
parameters here as well.

Suppose now to apply the same parametrization (4.3) adopted for the
double Poisson model. For simplicity, we assume a constant covariance (
ω1 = ω2 = ω3 = 0) depending then only on ψ0, and we further assume 
λ3 ≡ ϵ = exp{ψ0}. Then the likelihood of the model is given by

The model (4.16)—(4.17) with ω1 = ω2 = ω3 = 0 has 2K + 3

parameters—one more than the model (4.2)—whereas the bivariate Poisson
model with ω1 = ω2 = 1,ω3 = 0 has 4K + 3 parameters.

4.4.2.2 Implementation in footBayes

In footBayes the user can fit a bivariate Poisson model, either by adopting
the maximum likelihood or the Bayesian estimation approach, via the

(4.18)
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following code contained in Code Snippet 9 just specifying the data and the
model.

Code Snippet 9 Bivariate Poisson model in footBayes. ⏎

## MLE fit

biv_mle <- mle_foot(data = italy_2009,

                    model= "biv_pois")

 

## Bayesian fit

biv_stan <- stan_foot(data = italy_2009,

                      model= "biv_pois")

4.4.3 Dynamic models

A structural limitation from the previous models regards the assumption of
static team-specific parameters, which means that the teams are assumed to
have a constant performance across time, as determined by the offensive
and defensive abilities. However, in football analytics it is realistic to
assume that teams' performances, both in domestic leagues and
international competitions, tend to be dynamic and change across different
seasons, if not different weeks within the same season, or match-days
within the same competition. As widely known, many distinct factors could
contribute to the temporal variation in the performances, we list here just a
bunch of them:

the teams in the domestic leagues are usually involved in the
summer/winter players' transfermarket, and this could dramatically



change the quality and the composition of their rosters;

some teams' players could be injured in some periods and this could
affect the quality of the teams they belong to;

the football coaches could be dismissed from their teams due to some
non-effective results or other related problems;

some teams could improve/worsen their attitudes due to the so-called
turnover;

some teams could under/over perform in some periods due to their fitness
conditions;

and many more. For these and other reasons, we explore here some
dynamic extensions provided in the literature in terms of:

altering the likelihood through a weighting function in order to
acknowledge how the past historical information could contribute to the
most recent performances (indirect method);

specifying a time-dependent stochastic model for the offensive and
defensive parameters in the Poisson-based models, or for the global
abilities in the student-t model (direct method).

Many of the proposals in the literature combine both the direct and the
indirect procedures to account for dynamic trends: we deal with a quick
overview in the next sections.

4.4.4 Weighting function in the likelihood

Regarding the indirect method aforementioned, Dixon and Coles (1997)
propose to modify Equation (4.4) by introducing a pseudo-likelihood for



each time point t:

(4.19)

where ti is the time that match i was played, At = {i : ti < t}, λi1,λi2 are
defined as in Equation (4.3), τ is a scaling parameter accounting for
correlation of low-scores results, and ϕ is a non-increasing function of time.
For a thorough illustration of this scaled double Poisson model proposed by
Dixon and Coles (1997) we refer to Chapter 5, Section 5.4.1. Actually, in
Equation (4.19) the parameters αk,βk, ρ, and γ are themselves time-
dependent; maximizing this equation at time t leads to parameters estimates
which are based on games up to time t only. The choice of the function ϕ is
crucial to give more or less emphasis to past historical information. Dixon
and Coles (1997) propose to use:

(4.20)

for which all the previous results are exponentially downweighted
according to a parameter ξ > 0. The static model likelihood (4.4) arises as a
special case when ξ = 0, whereas larger values of ξ give more weight to the
most recent results. We note that the choice/optimization of the weighting

L (α, β, γ, ρ; y1, y2) =

  ∏
i∈At

{τλi1,λi2
(yi1, yi2)λyi1

i1 exp{−λi1}λyi2
i2 exp{−λi2}}ϕ(t−ti),

ϕ(t) = exp(−ξt),



parameter ξ can be problematic: the authors propose to choose ξ in light of
the values yielding the best predictive accuracy.

4.4.4.1 Truncated Poisson

Another indirect way to account for dynamic trends is introduced by Rue
and Salvesen (2000) and Owen (2011), who propose a Bayesian dynamic
double Poisson model to estimate the time-dependent skills of all the teams
competing in a league, by using the powerful MCMC enginery to fit the
model model and retrieve retrospective prediction. Rue and Salvesen (2000)
modify the model likelihood (4.19) of Dixon and Coles (1997) in two
directions, by using a truncated Poisson distribution in place of a canonical
Poisson, and providing a greater amount of model's robustness. They
propose to use an upper-truncated Poisson distribution with truncation set at
five goals, since the goals each team scores after five are not much
informative for the team-specific abilities. Moreover, they deem that only a
fraction of the match results is worth to affect and influence the offensive
and defensive abilities between two competing teams. They specify the
following model for the number of scores:

(4.21)

where Poisson∗ denotes an upper-truncated Poisson distribution with
upper truncation at five goals, λi1 and λi2 are the scoring rates as defined as
in (4.1), the correlation factor κ behaves similarly as in Equation (4.19)—
see Rue and Salvesen (2000) for further details—ϵ is the mixture parameter,

fY1,Y2
(y1, y2) = (1 − ϵ)κλi1,λi2

(yi1, yi2)Poisson∗(λi1)Poisson∗(λi2)

    + ϵκλi1,λi2
(yi1, yi2)Poisson∗(eμh)Poisson∗(eμa),



such that only 100(1 − ϵ)% of the information in the match result is
informative concerning the teams' abilities; the non-informative part in
(4.21) uses the average goal intensities exp(μh), exp(μa) —μh and μa

denote global constants describing (roughly) the logarithm of the empirical
mean of the home and away goals, respectively: compared to the general
formulation in (4.2), one could note that the global intercept μ = (μh,μa)

depends on whether the home or the away team is considered, see (4.22)
below for other details. The bigger is ϵ and the more shrunken are the scores
towards the low for an average match—the authors claim that the estimated
value for ϵ is about 0.2.

4.4.4.2 Dynamic abilities

Moreover, in order to directly consider time evolution across the season,
Rue and Salvesen (2000) and Owen (2011) specify time-dependent team-
specific abilities for team k, k = 1, … ,K, in correspondence of the distinct
match-times t, t = 1, 2, … ,T , denoted with attk,t, defk,t for a generic 
t ≥ 0. By extending (4.2), the scoring intensities can take then the general
form:

(4.22)

4.4.4.3 Dynamic abilities with psychological effects

In order to further directly model the dynamic abilities, Equation (4.22)
could be extended by including in this specification a so-called

log(λ1i) = μh + home + atthi,t + defai,t

log(λ2i) = μa + attai,t + defhi,t.



psychological effect:

(4.23)

where Δ12,t = (atthi,t − defhi,t − attai,t + defai,t)/2 measures the
difference in strength between the two teams at time t, and ζ is a further
parameter giving the magnitude of the psychological effect. In this
framework, we assume that the strengths of the two teams are not much
different, since we usually focus on teams in the same league, so it is
reasonable to expect ζ > 0 —as motivated by Rue and Salvesen (2000), the
opposite effect, ζ < 0 might occur if the home team is so superior
compared with the away team that the latter develops an inferiority complex
facing the home team, which we do not expect will happen in the same
league.

4.4.4.4 Prior distributions and STZ constraints

To allow the team-specific parameters to vary over time in a Bayesian
setting, Rue and Salvesen (2000) propose to use some particular prior
distributions to tie together att and def at successive time points t − 1 and
t. We highlight then the auto-regressive prior distributions for the offensive
and defensive parameters:

log(λ1i) = μh + home + atthi,t + defai,t − ζΔ12,t

log(λ2i) = μa + attai,t + defhi,t + ζΔ12,t,

attk,t ∼  N (attk,t−1,σ2
att),

defk,t ∼  N(defk,t−1,σ2
 def),



(4.24)

where the level of the abilities at time t is centred around the same skill
value at time t − 1, and σatt,σdef  reflect the evolution standard deviations
for all the teams and, for the attacking and defensive abilities, respectively.
Some STZ identifiability constraints as in (4.10) are assumed for each
match-time t:

(4.25)

We further assume prior distributions at time zero for the team-specific
abilities representing baseline attack and defence strengths at the beginning
of the season:

(4.26)

where μatt and μdef are hyper-parameters representing prior means for these
baseline attack and defence strengths, and σ2

0,att,σ
2
0,def  are the prior

variances at time zero (to inform these prior means, one could also follow
an informative Bayes approach and fix the hyper-parameters with respect to
some past team performance). To complete the model, some prior

K

∑
k=1

attk,t = 0,  
K

∑
k=1

defk,t = 0.

attk,0 ∼ N(μatt,σ
2
0,att),

defk,0 ∼ N(μdef ,σ
2
0,def),



distributions for all the other model parameters are required, and inference
from the posterior distribution could be obtained by use of MCMC
methods, as suggested by the authors.

4.4.4.5 Gaussian processes for the dynamic abilities

Another alternative to directly capture the temporal trend in the offensive
and defensive abilities is represented by the adoption of two Gaussian
processes (Egidi et al., 2018a): given the times t = 1, 2, … ,T  with t ∈ R,
the prior probability of a finite number of attack/defence parameters
conditioned on their inputs is then a multivariate Gaussian:

(4.27)

where μk,att(⋅),μk,def(⋅) are T-vectors, and Katt(⋅),Kdef(⋅) are two T × T

covariance matrices. The mean functions μ : RT → R
T  can be anything,

but the covariance function K : RT → R
T×T  must produce a positive-

definite matrix for any input t. The authors provide a HMC procedure to
estimate these parameters—see Section 2.5.1.3 in Chapter 2 for further
details.

4.4.4.6 Autoregressive process for the team-specific abilities

Koopman and Lit (2015) extend the bivariate Poisson specification of
Karlis and Ntzoufras (2003) in (4.16) towards a direct dynamic approach
under maximum likelihood estimation. By maintaining the previous
notation, the model specification is as follows:

attk,⋅ ∼ NT (μk,att(⋅),Katt(⋅)),

defk,⋅ ∼ NT (μk,def(⋅),Kdef(⋅)),



(4.28)

To take into consideration the time evolution in the teams' abilities, they
propose an auto-regressive process for both the attack and the defence
parameters:

(4.29)

where γatt
k , γdef

k  are unknown constants, ϕatt
k ,ϕdef

k  are autoregressive
coefficients, and ηattk,t , η

def
k,t  are normally distributed error terms which are

independent of each other for each team k and time t. The authors assume a
stationary process for the team-specific abilities by requiring the conditions 
|ϕ⋅

k| < 1. The independent disturbance sequences are stochastically
generated by:

(4.30)

whereas the initial conditions for the auto-regressive processes are based on
means and variances of their unconditional distributions—here for the

(Yi1,Yi2|λi1,λi2,λi3) ∼ BP(λi1,λi2,λi3)

log(λi1) = μ + home + atthi,t + defai,t

log(λi2) = μ + attai,t + defhi,t.

attk,t =  γatt
k + ϕatt

k attk,t−1 + ηattk,t

defk,t =  γdef
k + ϕ

def
k defk,t−1 + η

def
k,t ,

η
⋅
k,t ∼ N(0,σ2

k),



attack only:

(4.31)

4.4.4.7 Implementation in footBayes

In footBayes the user can fit Bayesian dynamic models by allowing team-
specific abilities as in Equations (4.22) and (4.24) via the following code in
Code Snippet 10, by using the dynamic_type argument in the stan_foot
function. Note that the “weekly” option is appropriate when data relate to
matches of the same season.

Code Snippet 10 Dynamic models in footBayes. ⏎

## dynamic Bayesian fit

dp_stan_dyn <- stan_foot(data = italy_2009,

                         model= "double_pois",

                         dynamic_type ="weekly")

biv_stan_dyn <- stan_foot(data = italy_2009,

                          model= "biv_pois",

                          dynamic_type ="weekly")

4.5 Case-study: Italian Serie A 2009/2010

E(attk,t) = γatt
k /(1 − ϕatt

k ),    Var(attk,t) = σ2
k/(1 − (ϕatt

k )2).



In order to fully illustrate the main functionalities of the package, we import
some data about the Italian Serie A, season 2009/2010, from the italy
dataset available from the footBayes package. The season consists of 
K = 20 teams and T = 38 match-days teams according to a round-robin
format, where the teams compete in a home-and-away format, playing
against each other twice in total: once at their home stadium and once at
their opponent's. We start with some basic Poisson-based models covered in
Sections 4.4 by adopting:

the likelihood approach: the mle_foot function returns a “list” class
object containing the MLE estimates along with 95% profile-likelihood
deviance confidence intervals (by default) or Wald-type confidence
intervals. The user can choose the desired confidence interval with the
optional argument interval = c(”profile”, ”Wald”).

the Bayesian approach: the stan_foot function returns a “stanFoot”
class object containing the results of an HMC posterior sampling
performed through the underlying rstan ecosystem. Beyond the usual
arguments, the user can eventually choose the number of iterations (iter),
the number of Markov chains (chains), and other optional arguments
values related to the sampling algorithm. Through the print function, the
usual Bayesian model summaries can be obtained: posterior means,
medians, standard deviations, percentiles at 2.5%, 25%, 75%, 97.5%
level; moreover, the effective sample size (n_eff) and the Gelman-Rubin
statistic (Rhat) (Gelman et al., 1992) to monitor the algorithm's
convergence are available.

At this initial stage, we currently ignore any time-dependence in our
parameters, considering them to be static across distinct match-days of the
2009/2010 season. We start by exploring the data, a data table consisting of



five columns: the season (periods), the home team (home_team), the
away team (away_team) the home goals (home_goals) and away goals
(away_goals). Data acquisition and columns' renaming are reported in
Code Snippet 11, whereas a summary of the data is shown in Output 7.
Each row corresponds to the information for a single match.

Code Snippet 11 Italian Serie A 2009/2010: data acquisition. ⏎

### some required packages (install them!)

 

library(footBayes)

library(devtools)

library(dplyr)

library(bayesplot)

library(ggplot2)

library(loo)

 

### Use Italian Serie A 2009/2010

 

data(italy) # available in footBayes

italy_2009 <- subset(italy[, c(2,3,4,6,7)], Season =="2009")

colnames(italy_2009) <- c("periods", "home_team", 

"away_team",

                          "home_goals", "away_goals") # 

rename columns

head(italy_2009)



        periods      home_team      away_team home_goals 

away_goals

17501      2009     Bologna FC ACF Fiorentina          1    

1

17502      2009       AC Siena       AC Milan          1    

2

17503      2009          Inter        AS Bari          1    

1

17504      2009 Calcio Catania      Sampdoria          1    

2

17505      2009      Genoa CFC        AS Roma          3    

2

17506      2009       Juventus  Chievo Verona          1    

0

Output 7: Italian Serie A 2009/2010 dataset: a summary. Each row denotes
a single match. ⏎

4.5.1 Static models

We start by fitting the Bayesian double and bivariate Poisson models by
using four parallel Markov chains and 2000 iterations for each chain. The
home-effect is included since we are framed in a domestic leagues with
home/away matches. Then, as shown in Code Snippets 12 and 13 and
reported in Outputs 8 and 9, we print the posterior estimates for some
selected parameters (here iterations messages and other eventual



warnings/messages from the R consolle are suppressed to ease the
readability).

Code Snippet 12 Italian Serie A 2009/2010: double Poisson model. ⏎

### Fit static Stan models

 

dp_stan <- stan_foot(data = italy_2009,

                     model="double_pois",

                     home_effect = TRUE)    # double poisson

print(dp_stan, pars =c("home", "sigma_att", "sigma_def"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

          mean se_mean   sd 2.5% 25% 50% 75% 97.5% n_eff 

Rhat

home      0.41       0 0.04 0.32 0.38 0.41 0.44 0.49 4779 

1.00

sigma_att 0.20       0 0.06 0.10 0.16 0.19 0.23 0.32 1327 

1.00

sigma_def 0.11       0 0.05 0.03 0.08 0.11 0.15 0.23  329 

1.03



Output 8: Double Poisson model's summary from stan_foot. Posterior
estimates for the selected parameters. ⏎

Code Snippet 13 Italian Serie A 2009/2010: bivariate Poisson model. ⏎

biv_stan <- stan_foot(data = italy_2009,

                      model="biv_pois",

                      home_effect = TRUE) # biv poisson

print(biv_stan, pars =c("home", "rho", "sigma_att", 

"sigma_def"))

Summary of Stan football model

------------------------------

 

Posterior summaries for   model parameters:

           mean se_mean     sd  2.5%   25%    50%   75%  97.5% 

n_eff  Rhat

home       0.34    0.00   0.05  0.23  0.30   0.34  0.37   0.44 

3782     1

rho       -2.36    0.01   0.42 -3.34 -2.60  -2.31 -2.06  -1.67 

3395     1

sigma_att  0.20    0.00   0.06  0.10  0.16   0.20  0.24   0.33 

1603     1

sigma_def  0.12    0.00   0.05  0.03  0.08   0.11  0.15   0.22 

397     1

Output 9: Bivariate Poisson model's summary from Stan. ⏎



The Gelman-Rubin statistic R̂ (Rhat) reported in the last column is
below the threshold 1.1 for all the parameters in both the models in Outputs
8 and 9, respectively; the effective sample size (n_eff), measuring the
approximate number of iid replications from the Markov chains, does not
appear to be problematic. Thus, HMC sampling reached the convergence to
the stationary distribution for all the parameters of interest.

As we could expect, the Bayesian fit suggests there is an estimated
positive home-effect, being the posterior mean for home equal to 0.41 in
the double Poisson and 0.34 in the bivariate Poisson model, which means
that there is an estimated multiplicative effect of exp{0.41} ≈ 1.51 and 
exp{0.34} ≈ 1.40 in the average goals scored by the home team,
respectively. As a matter of interpretation, if we consider the bivariate
Poisson model this implies that if the abilities of the two teams do
compensate one each other in such a way that the sum of one team's attack
and the other team's defense is approximately equal to zero, then the
average number of goals for the home team will be λ̂1 = exp{0.34} ≈ 1.40

, against λ̂2 = exp{0} = 1. The posterior estimates for the attack and
defence standard deviations are basically the same in the two models.

NOTE: consider that in this model specification from stan_foot, unlike
for what is explicitly specified in Equations (2.3) and (4.2), the global
intercept μ is not included. However, as a matter of modelling interpretation
and global identifiability, here μ = μatt + μdef , where μatt and μdef are the
hyper-prior means of the team-specific abilities specified in Equation (4.7)
for the Bayesian models. Thus, μ is not directly reported as a fixed-effect
estimated term in Outputs 8 and 9, rather it is absorbed in the terms μatt and
μdef.

In the bivariate Poisson model estimated above, we assume that the
covariance λ3 defined in Equation (4.17) is constant, thus it does not depend



on the match or teams' characteristics, or further covariates:

where ρ is assigned an half-Gaussian prior distribution with standard
deviation equal to 1—in Equation (4.17) we used the symbol ψ0 to denote
the intercept in the covariance specification, here we use ρ to simplify the
notation. According to the fit above, we get an estimate of 
λ3 = exp{−2.36} ≈ 0.094, suggesting a low, despite non-null, amount of
goal-correlation existing from the 2009/2010 Italian Serie A. In further
package versions beyond the 1.0.0, the user will be allowed to specify a
more general linear predictor for log(λi3), as outlined in Equation (4.17) in
Section 4.4.2, along with some prior distributions for the parameters
involved in the covariance formulation.

In terms of visualization, we can depict the marginal posterior
distributions for ρ, and eventually for the other fixed-effects parameters of
the bivariate Poisson model, using the bayesplot R package designed for
Bayesian visualizations, as shown in Code Snippet 14 and reported in
Output 10.

Code Snippet 14 Italian Serie A 2009/2010: marginal posterior
distributions. ⏎

## Marginal posterior with bayesplot

 

posterior1 <- as.matrix(biv_stan$fit)

mcmc_areas(posterior1, regex_pars=c("home", "rho",

λ3 =   exp{ρ}

ρ ∼  N +(0, 1),



                                    "sigma_att", 

"sigma_def"))+

  xaxis_text(on =TRUE, size=ggplot2::rel(2.9))+

  yaxis_text(on =TRUE, size=ggplot2::rel(2.9))+

  scale_y_discrete(labels = c("home", expression(rho),

                    expression(sigma[att]), 

expression(sigma[def])))+

  theme(plot.title = element_text(hjust = 0.5, size 

=rel(2.6)))



Long Description for Output 10

Output 10:  Italian Serie A 2009/2010: posterior marginal distributions from
the bivariate Poisson model (iter = 2000, four parallel chains). The dark
grey lines denote the posterior medians, whereas the light grey area
corresponds to 50% high posterior density (HPD) credible intervals.⏎

We estimate now the double and bivariate Poisson models under the
MLE approach with Wald-type confidence intervals and print the MLE
estimates, e.g. for the parameters fixed-effect parameters, as shown in Code
Snippets 15 and 16 and reported in Outputs 11 and 12.

Code Snippet 15 Italian Serie A 2009/2010: double Poisson model (ML)
estimate. ⏎

### Fit static MLE models (wald-type CIs)

 

dp_mle <- mle_foot(data = italy_2009, model="double_pois",

                    interval = "Wald") # mle biv poisson

tab_dp <- rbind(dp_mle$home)

rownames(tab_dp) <- c("home")

tab_dp

     2.5% mle 97.5%

home 0.31 0.39 0.47

Output 11: Maximum likelihood estimates for the double Poisson model
using Wald-type confidence intervals.



Code Snippet 16 Italian Serie A 2009/2010: bivariate Poisson model
(ML). ⏎

biv_mle <- mle_foot(data = italy_2009, model="biv_pois",

                     interval = "Wald") # mle biv poisson

tab_biv <- rbind(biv_mle$home, round(log(biv_mle$corr),2))

rownames(tab_biv) <- c("home", "rho")

tab_biv

     2.5%   mle 97.5%

home 0.25 0.34 0.42

rho -2.53 -2.53 -2.41

Output 12: Maximum likelihood estimates for the bivariate Poisson model
using Wald-type confidence intervals.

As we may notice from Outputs 11 and 12, MLE and Bayesian models
give very similar results in terms of parameters' estimates, at least regarding
the home effect and the correlation parameter, being the estimated home
equal to 0.39 in the double Poisson and 0.34 in the bivariate Poisson model,
whereas ρ̂ = −2.53, which means that λ̂3 = exp{−2.53} ≈ 0.08 in the
bivariate Poisson fit.

As broadly explained in the previous sections, football models easily
incorporate latent parameters describing the attacking and defensive skills
of all the teams included in the dataset or for a selected portion. Once we fit
a model with the footBayes package, the step of displaying and analyzing



the teams' abilities is crucial and can be accomplished from both a graphical
and numerical perspective. However, rather than printing a collection of
numerical estimates, the function foot_abilities takes both “stanFoot” and
“list” class objects and clearly depicts posterior/confidence intervals for the
attacking and defensive abilities on the considered data (here for the
bivariate Poisson only), as explained in Code Snippet 17.

Code Snippet 17 Italian Serie A 2009/2010: static abilities. ⏎

## plotting static abilities

 

foot_abilities(biv_stan, italy_2009)

foot_abilities(biv_mle, italy_2009)



Long Description for Output 13

Output 13:  Italian Serie A 2009/2010: 50% (thicker segments) and 95%
(thinner segments) credible (a) and confidence (b) intervals for attacking
(red segments) and defensive (blue segments) static abilities for the
bivariate Poisson fit.⏎

In Output 13 we depict the 95% credibility and confidence intervals for
the attacking (red segments) and defensive (blue segments) abilities for the
twenty teams competing in the Italian Serie A 2009/2010: coherently with



the model formulation in Section 4.4.2, the higher (lower) is the attack
(defence) the better is evaluated the team. Internazionale FC (abbreviated
with Inter), the team winning the Serie A 2009/2010, reports the best
defensive and attacking skills; conversely, AS Livorno, which concluded
the 2009/2010 season at the least ranking position and then has been
relegated in the second division—the Italian Serie B—displays a relatively
high defensive estimated value—again, representing weak defensive
performance—and a low attacking estimated ability. The two plots are
ordered according to the attacking ranks, with the best teams of Serie A that
are correctly associated with high attacking and low defensive values: we
remind again that these estimates are defined on the logarithmic scale,
being included in the log-linear predictors for the average goals scored by
two competing teams in each match.

In general, both the frequentist and the Bayesian model fits seem to well
capture the static abilities, and yield similar results in terms of skills'
estimates: in the next sections we will compare these estimated abilities
with the final observed rank positions.

4.5.2 Dynamic models

As thoroughly motivated in Section 4.4.3, a structural limitation in the
previous models is the assumption of static team-specific parameters, such
that teams are assumed to show a constant performance across time, as
determined by the attack and defence abilities. However, teams'
performances tend to be dynamic and change across different years, if not
different weeks when data related to domestic leagues, for many
aforementioned factors, such as the players' transfermarket, injuries,
dismissions, turnovers, etc.. For these and other many reasons, we can then
assume dynamic abilities patterns using the dynamic_type argument in the



stan_foot function, with possible options “seasonal” or “weekly” in order
to consider more seasons or more week-times within a single season,
respectively. We fit now the two double and the bivariate Poisson models
by allowing weekly dynamic team-specific abilities along the Serie A
2009/2010 season and extract the posterior estimates for the fixed-effects
parameters (Code Snippets 18 and 19), where the prior distributions for the
offensive/defensive abilities are defined as in Equations (4.24) and (4.26).

Code Snippet 18 Italian Serie A 2009/2010: dynamic double Poisson
model. ⏎

### Fit dynamic Bayesian models

 

dp_stan_dyn <- stan_foot(data = italy_2009,

                           model= "double_pois",

                           home_effect = TRUE,

                           dynamic_type ="weekly") # double 

poisson

print(dp_stan_dyn, pars =c("home", "sigma_att", 

"sigma_def"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

          mean se_mean   sd 2.5%  25%  50%  75% 97.5% n_eff 

Rhat



home      0.41       0 0.04 0.33 0.38 0.41 0.44 0.49  2062 

1.00

sigma_att 0.04       0 0.01 0.02 0.03 0.04 0.04 0.06    24 

1.09

sigma_def 0.03       0 0.01 0.02 0.02 0.03 0.04 0.05     9 

1.42

Output 14: Dynamic double Poisson model's summary from stan_foot.
Posterior estimates for the selected parameters.

Code Snippet 19 Italian Serie A 2009/2010: dynamic biv. Poisson
model. ⏎

biv_stan_dyn <- stan_foot(data = italy_2009,

                          model= "biv_pois",

                          home_effect = TRUE,

                          dynamic_type ="weekly") # biv. 

Poisson

print(biv_stan_dyn, pars =c("home", "rho", "sigma_att", 

"sigma_def"))

Summary of Stan football model

------------------------------

 

Posterior summaries for   model parameters:

           mean  se_mean     sd  2.5%    25%   50%   75% 

97.5% n_eff Rhat



home       0.33     0.00   0.05  0.23   0.30  0.34  0.37  0.43 

2816 1.00

rho       -2.35     0.01   0.42 -3.34  -2.59 -2.29 -2.05 -1.66 

3044 1.00

sigma_att  0.04     0.01   0.01  0.01   0.03  0.04  0.05  0.06 

5 1.68

sigma_def  0.04     0.00   0.01  0.02   0.03  0.04  0.04  0.06 

19 1.25

Output 15: Dynamic bivariate Poisson model's summary from stan_foot.
Posterior estimates for the selected parameters. ⏎

The estimates for the home effect and the correlation parameter in the
bivariate Poisson fit in Output 15 appear quite close to those previously
obtained under the static model in Section 4.5.1, being 
λ̂3 = exp{−2.35} ≈ 0.095 and home = 0.33. According to the estimation
of the attacking and defensive standard deviations (see Equation (4.24)),
there is a slight lack of convergence of the algorithm under both the models
as monitored by the Gelman-Rubin statistic, which is usually greater than
the “golden” threshold 1.1: in this case, increasing the number of iterations
(here by defaults there are 2000 HMC iterations) could help.

We can then depict the team-specific dynamic abilities, along with a 50%
credible interval, by simply typing the following instructions reported in
Code Snippet 20.

Code Snippet 20 Italian Serie A 2009/2010: dynamic abilities. ⏎

## Plotting dynamic abilities: credible 50% intervals



 

foot_abilities(biv_stan_dyn, italy_2009)

As we can see from Output 16, dynamic abilities naturally evolve over
time: the best teams—Inter, AS Roma, AC Milan—report increasing
attacking and decreasing defensive abilities, whereas the worst ones—AS
Livorno, AC Siena and Atalanta—exhibit decreasing attacking and
increasing defensive skills. The reason behind these increasing/decreasing
trends is straightforward: the attack/defence parameters have been
initialized by default to have a prior mean equal to zero, thus, as the season
evolves and new information is acquired, the posterior estimates are
computed, and these could oscillate much far away from the initial prior
guess. We suggest the user to change the prior mean for the
attacking/defensive parameters, by specifying his/her initial values to better
reflect his/her feelings about the teams' strengths through the argument
prior_par in the stan_foot function, as shown in the next section.

4.5.3 Changing default prior distributions

A common practice in Bayesian statistics is to change the prior distributions
and perform some sensitivity checks with respect to the choice of some
hyper-parameters. The default priors for the static team-specific abilities
supported by the package are defined in Equation (4.7), whereas the default
prior distributions for their related team-level standard deviations are given
by Equation (4.9). For μatt and μdef the user could supply some fixed
numerical values. However, the user is free to elicit some different priors
for the abilities, choosing one among the following distributions: Gaussian
(normal), student-t (student_t), Cauchy (cauchy) and Laplace (laplace).



The prior_par optional argument allows to specify the priors for the team-
specific parameters att and def through the argument ability, whereas a
different prior for the team-specific standard deviations σatt,σdef  could be
specified through the argument ability_sd. For instance we could consider:

(4.32)

attk ∼ t4(μatt,σatt),

defk ∼ t4(μdef ,σ def),  k = 1, 2, , … ,K

σatt,σdef ∼  Laplace+(0, 1),



Long Description for Output 16

Output 16:  Italian Serie A 2009/2010: 50% credible intervals (grey
ribbons) for attack (red curves) and defence (blue curves) weekly dynamic
abilities for the dynamic bivariate Poisson fit.⏎

where tdf(μ,σ) denotes a student-t distribution with df degrees of freedom,
location μ and scale σ, whereas Laplace+ denotes a half-Laplace
distribution. Code Snippet 21 shows how to change the prior distributions
accordingly.

Code Snippet 21 Italian Serie A 2009/2010: change prior distributions. ⏎



## change default priors

biv_stan_t <- stan_foot(data = italy_2009,

                        model="biv_pois",

                        home_effect = TRUE,

                        chains = 4,

                        prior_par = list(ability = 

student_t(4,0,NULL),

                                         ability_sd = 

laplace(0,1)),

                        iter = n_iter) # biv poisson

Then, we can compare the marginal posteriors from the two models, the
bivariate Poisson with default Gaussian team-specific abilities and the 
Cauchy(0, 5) prior for the team-level standard deviations, and the other
one specified above, with student-t distributed team-specific abilities and
the Laplace+(0, 1) prior for the team-level standard deviations: the code is
reported in Code Snippet 22. We depict in Output 17 the comparison for the
attacking team-specific standard deviations only, by combining the
bayesplot function mcmc_areas with some optional ggplot2 arguments
as reported in Code Snippet 22.

Code Snippet 22 Italian Serie A 2009/2010: marginal posterior
comparison. ⏎

## graphical posteriors comparison

 

posterior1_t <- as.matrix(biv_stan_t$fit)



model_names <- c("Gauss. + Cauchy", "Stud+Laplace")

color_scheme_set(scheme = "gray")

gl_posterior <- cbind(posterior1[,"sigma_att"],

                      posterior1_t[,"sigma_att"])

colnames(gl_posterior)<-c("sigma_att", "sigma_att_t")

mcmc_areas(gl_posterior, pars=c("sigma_att", 

"sigma_att_t"))+

  xaxis_text(on =TRUE, size=ggplot2::rel(2.9))+

  yaxis_text(on =TRUE, size=ggplot2::rel(2.9))+

  scale_y_discrete(labels = ((parse(text= model_names))))+

  ggtitle(expression(sigma[att]))+

  theme(plot.title = element_text(hjust = 0.5, size 

=rel(2.6)))

Long Description for Output 17



Output 17:  Italian Serie A 2009/2010: marginal posterior distributions for
the attacking team-specific standard deviation σatt from: the bivariate
Poisson model with student-t and half-Laplace priors; the bivariate Poisson
model with default Gaussian and half-Cauchy priors. The grey area denotes
the 50% high posterior density (HPD) interval.⏎

The half-Laplace prior induces a slightly lower amount of group-
variability, then, a slightly larger amount of shrinkage towards the grand
mean μatt.

When specifying the prior for the team-specific parameters through the
argument prior_par, the user is not allowed to supply the group-level
standard deviations σatt,σdef  with some numerical values. Rather, they
need to be assigned a reasonable prior distribution. For such reason, the
most appropriate specification for the ability argument is through the
following pseudo-code: prior_par = list(ability = “dist”(0, NULL)), where
the standard deviation/scale argument is set to NULL—otherwise, a
warning message occurs.

4.5.4 Predictions and predictive accuracy

4.5.4.1 Posterior out-of-sample probabilities

The hottest feature in sports analytics is to obtain predictions for future
matches. We consider the posterior predictive distribution—hereafter, ppd
—for future and observable data ~

D  and acknowledge then the whole
model's prediction uncertainty, which propagates from the posterior model's
uncertainty. In such a way, we can generate observable values ~

D

conditioned on the data D = (yi1, yi2)i=1,…,n:



where f(θ|D) is the posterior distribution of the parameter vector θ. We
may then predict held-out match results by using the argument predict of
the stan_foot function, considering the last two weeks of the 2009/2010
season as the test set. The function foot_prob allows to compute posterior-
results probabilities for the selected matches, in terms of home win, draw,
and away win probabilities (see Code Snippet 23).

Code Snippet 23 Italian Serie A 2009/2010: probabilistic predictions. ⏎

## predict the last 2 match-days of the season

 

biv_stan_pred <- stan_foot(data = italy_2009,

                             model="biv_pois",

                             home_effect = TRUE,

                             predict = 20,

                             iter = n_iter) # biv poisson

foot_prob(object = biv_stan_pred, data = italy_2009)

f(
~
D|D) = ∫ f(

~
D|θ)f(θ|D)dθ,



Long Description for Output 18

Output 18:  Italian Serie A 2009/2010: posterior predictive probabilities
results for the last two match-days under the static bivariate Poisson model.
Darker regions correspond to results with higher probabilities, whereas the
red square denotes the final actual result.⏎

Table 4.1 returned by the foot_prob function reports the home and the
away teams in the first two columns. Columns from three to five report the
home win, draw, and away win posterior predictive probabilities,
respectively, whereas the sixth column reports the “most likely result”



(MLO) according to the collection of all the possible results as returned by
the ppd.

TABLE 4.1
Italian Serie A 2009/2010: probabilistic predictions for held-out matches,
the last two match-days under the static bivariate Poisson model. Columns
from three to five report the home win, draw, and away win posterior
predictive probabilities, respectively, whereas the sixth column reports the
“most likely result” (MLO) according to the collection of all the possible
results as returned by the ppd⏎

Home team Away team
Home
win Draw

Away
win MLO

SSC Napoli Atalanta 0.518 0.257 0.225 1–0
(0.126)

Udinese
Calcio

AS Bari 0.467 0.255 0.278 1–1
(0.109)

AS Roma Cagliari
Calcio

0.535 0.230 0.235 1–1
(0.098)

Bologna FC Calcio
Catania

0.433 0.274 0.293 1–0
(0.12)

Inter Chievo
Verona

0.587 0.231 0.182 1–0
(0.117)

AS Livorno Lazio Roma 0.370 0.305 0.325 1–0
(0.141)

Genoa CFC AC Milan 0.419 0.250 0.331 1–1
(0.109)

Juventus Parma FC 0.504 0.252 0.244 1–1
(0.115)



Home team Away team
Home
win Draw

Away
win MLO

US Palermo Sampdoria 0.489 0.251 0.260 1–1
(0.118)

ACF
Fiorentina

AC Siena 0.524 0.249 0.227 1–1
(0.111)

AC Milan Juventus 0.505 0.245 0.250 1–1
(0.108)

Lazio Roma Udinese
Calcio

0.415 0.276 0.309 1–1
(0.128)

Cagliari
Calcio

Bologna FC 0.519 0.243 0.238 1–1
(0.111)

AS Bari ACF
Fiorentina

0.430 0.268 0.302 1–1
(0.127)

Calcio
Catania

Genoa CFC 0.436 0.256 0.308 1–1
(0.117)

AC Siena Inter 0.299 0.250 0.451 1–1
(0.107)

Parma FC AS Livorno 0.509 0.273 0.218 1–0
(0.153)

Sampdoria SSC Napoli 0.451 0.266 0.283 1–1
(0.121)

Atalanta US Palermo 0.376 0.271 0.353 1–1
(0.131)

Chievo
Verona

AS Roma 0.340 0.272 0.388 1–1
(0.126)



The function foot_prob returns also some “chessboard” plots for the
held-out matches as those provided in Output 18, where darker regions are
associated with higher posterior probabilities, whereas the red square
corresponds to the actual final observed results. As a matter of rough
interpretation, when the red square is in correspondence of darker regions,
this denotes an approximated good agreement between the prediction and
the actual result. In this plot the first team name in the single labels denotes
the favourite team, whereas the second name denotes the “underdog” team
where the term “underdog” refers to the team associated with lower
winning chances; moreover, we depict the most balanced matches to the
most apparently unbalanced ones from the left top corner to the right
bottom corner. Thus, the match AS Livorno-Lazio Roma (top left corner in
the plot) is the most balanced, whereas Inter-Chievo Verona (right bottom
corner) the most unbalanced in favour of Inter, whose the predicted winning
probability is about 59%.

4.5.5 Rank-league reconstruction

As widely explained in Chapter 3, Sections 3.3 and 3.3.2, statisticians and
football amateurs are much interested in the final rank-league predictions.
However, predicting the final rank positions, along with the corresponding
teams' points, is often assimilated to an oracle, rather than a coherent
statistical procedure. We can provide here:

retrospective rank-league reconstruction (aggregated or at team-level) by
using the foot_rank function and in-sample replications D rep, as
depicted in Outputs 19, 20 for the bivariate Poisson model, where yellow
ribbons denote the credible intervals, and solid blue points and lines



denote the observed final and cumulated points, respectively (Code
Snippet 24).

Code Snippet 24 Italian Serie A 2009/2010: rank-league
reconstruction. ⏎

## Retrospective rank reconstruction

# aggregated plot

 

foot_rank(data = italy_2009, object = biv_stan)

 

# team-specific plot

 

foot_rank(data = italy_2009, object = biv_stan,

            visualize = "individual")



Long Description for Output 19

Output 19:  Italian Serie A 2009/2010: retrospective rank-league
reconstruction using in-sample replications from the posterior predictive
distribution under the static bivariate Poisson model. The blue dots
denote the final observed points; dark yellow ribbons denote 50%
credible intervals, and light yellow ribbons denote 95% credible intervals
from the ppd.⏎



Long Description for Output 20

Output 20:  Italian Serie A 2009/2010: retrospective rank-league
reconstruction using in-sample replications from the posterior predictive
distribution under the static bivariate Poisson model for each team. The
blue lines denote the cumulated observed points; dark yellow ribbons
denote 50% credible intervals, and light yellow ribbons denote 95%
credible intervals from the ppd for the simulated cumulated points.⏎

Ahead rank-league prediction (aggregated or at team-level) by using the
foot_rank function and the held-out replications ~

D  as depicted in Table
4.2 and Outputs 21, 22 for the bivariate Poisson model, where yellow
ribbons denote the credible intervals, and solid blue points and lines



denote the observed final and cumulated points, respectively (Code
Snippet 25). Training set: first 36 match-days; test set: last two match-
days.

TABLE 4.2
Italian Serie A 2009/2010: rank-league predictions under the
static bivariate Poisson model. Training data: first 36 match-days;
test data: last two match-days. The third column reports the
posterior predicted medians for the final points, whereas the fifth
column reports the 50% credible interval for the final points⏎

Position Team
Estimated

(50%) Observed
50%

Interval

1 Inter 80 82 (79, 82)

2 AS Roma 77 80 (76, 78)

3 AC Milan 70 70 (68, 71)

4 Sampdoria 66 67 (64, 67)

5 US Palermo 64 65 (62, 65)

6 SSC Napoli 59 59 (57, 60)

7 Juventus 58 55 (56, 59)

8 Genoa CFC 51 51 (49, 52)

9 ACF
Fiorentina

49 47 (47, 50)

10 AS Bari 49 50 (47, 50)

11 Parma FC 49 52 (47, 50)



Position Team
Estimated

(50%) Observed
50%

Interval

12 Udinese
Calcio

46 44 (44, 47)

13 Cagliari
Calcio

46 44 (44, 47)

14 Chievo
Verona

46 44 (45, 47)

15 Calcio
Catania

44 45 (42, 45)

16 Bologna FC 43 42 (41, 44)

17 Lazio Roma 43 46 (41, 44)

18 Atalanta 38 35 (36, 38)

19 AS Livorno 32 29 (30, 32)

20 AC Siena 32 31 (30, 33)

Code Snippet 25 Italian Serie A 2009/2010: rank-league predictions. ⏎

## Rank predictions

 

# aggregated plot

 

foot_rank(data = italy_2009, object = biv_stan_pred)

 



# team-specific plot

 

foot_rank(data = italy_2009, object = biv_stan_pred,

          visualize = "individual",

          teams = c( "Inter", "AS Roma",

                      "AC Milan", "Sampdoria"))

Long Description for Output 21

Output 21:  Italian Serie A 2009/2010: rank-league prediction using out-
of-sample replications from the posterior predictive distribution under the
static bivariate Poisson model (training set: first 36 match-days; held-out
set: last two match-days). The blue dots denote the final observed points;



dark yellow ribbons denote 50% credible intervals, and light yellow
ribbons denote 95% credible intervals from the ppd.⏎

Long Description for Output 22

Output 22:  Italian Serie A 2009/2010: rank league prediction using out-
of-sample replications from the posterior predictive distribution for the
four best teams in that season, namely Inter, AS Roma, AC Milan and
Sampdoria under the static bivariate Poisson model (training-set: 36 first
match-days; held-out set: last two match-days). The blue lines denote the
cumulated observed points; dark yellow ribbons denote 50% credible



intervals, and light yellow ribbons denote 95% credible intervals from the
ppd for the simulated cumulated points.⏎

In Table 4.2, the third column reports for each team the predicted number
of points in terms of medians, the fourth column indicates the number of
observed points, whereas the fifth column contains the 50% credibility
interval from ppd for the predicted points under the model. As we may
easily notice, the model predicted points match pretty well the observed
points for each team.

4.5.6 Model checking

Checking the model fit is a relevant and vital statistical task. To this
purpose, we can evaluate hypothetical replications D rep under the posterior
predictive distribution:

and check whether these replicated values are somehow close to the
observed data D: in other words, we want to check whether the observed
values are a plausible realization of the simulation process obtained through
the ppd. These methods aimed at comparing hypothetical replications with
the observed data are named posterior predictive checks (Gelman et al.,
1996, 2013) and nowadays they represent a milestone for goodness-of-fit
purposes in modern Bayesian inference.

The function pp_foot allows to obtain:

f(D rep|D) = ∫ f(D rep|θ)f(θ|D)dθ,



an aggregated plot depicting the frequencies of the observed goal
differences Zi = Yi1 − Yi2,  i = 1, … ,n in the dataset (blue segments)
plotted against the replicated ones (orange jittered points)—those
obtained through the ppd—as depicted in Output 24 if the argument type
= ”aggregated” is chosen. In this case the function returns also in the R
console the Bayesian p-value (Gelman et al., 1996), Pr(Z rep

i ≥ Zi|D), to
monitor any possible misfit, as shown in Output 23—note that values for
these p-values too close to 0 or 1 are symptomatic of model deficiencies
—see Code Snippet 26 for the corresponding implementation.

NOTE: goal differences greater than three in absolute value are not
considered here.

A visualization of the match-ordered goal differences (blue segments)
along with their 50% and 95% credible intervals (light and dark orange
ribbons) obtained from the ppd as depicted in Output 26 if the argument
type = “matches” is chosen. In this case the function returns in the R
console a short table displaying the level of credibility chosen by the user
—coverage = 0.95 is the default option—and a measure of empirical
coverage to check whether the observed points fall in the corresponding
credible intervals—note that values for the empirical coverage much
smaller than the credibility level could be symptomatic of model
deficiencies, conversely values higher than the credibility level could
suggest an amount of overfitting (see Output 25 and Code Snippet 27).

Code Snippet 26 Italian Serie A 2009/2010: aggregated model checking. ⏎

## PP checks: aggregated goal's differences

   and ordered goal differences

 



pp_foot(data = italy_2009, object = biv_stan,

        type = "aggregated")

$pp_table

  goal diff. Bayesian p-value

1         -3            1.000

2         -2            0.758

3         -1            0.667

4          0            0.227

5          1            0.174

6          2            0.150

7          3            0.300

Output 23: Italian Serie A 2009/2010: model checking table for the
observed goal differences under the static bivariate Poisson model. The first
column indicates the goal differences from −3 until 3, and the second
column reports the Bayesian p-value for each goal-difference. ⏎



Long Description for Output 24

Output 24:  Italian Serie A 2009/2010: frequencies of observed goal
differences (blue segments) against replicated goal differences from the ppd
(orange jittered points) under the static bivariate Poisson model.⏎

Code Snippet 27 Italian Serie A 2009/2010: matches' model checking. ⏎

pp_foot(data = italy_2009, object = biv_stan,

        type = "matches")

$pp_table

  1-alpha emp. coverage

1    0.95         0.968



Output 25: Italian Serie A 2009/2010: model checking table for single
matches. ⏎

Long Description for Output 26

Output 26:  Italian Serie A 2009/2010: ordered observed goal differences
(blue segments) against 95% ordered credible intervals for simulated the
goal differences (orange ribbons) obtained from the ppd under the static
bivariate Poisson model.⏎

The aggregated goal difference frequencies seem to be decently captured
by the model's ppd replications: in the first plot, in Output 24, the blue
horizontal lines denote the observed goal differences frequencies registered
in the dataset, whereas the yellow jittered points denote the corresponding
ppd replications. A goal-difference of 0, corresponding to the draws, is not
underestimated by the model—for draw inflation arguments, see models in
Chapter 5—and the corresponding p-value is in fact equal to 0.227. The



only problematic case occurs for a goal-difference of −3, which
corresponds to an away team beating an home team with three goals of
margin: in this case, the static BP model overestimates this occurrence, and
the Bayesian p-value is equal to 1, being all the orange jittered points
greater than the observed frequency.

In the second plot, in Output 26, the ordered observed goal differences
(blue segments) are plotted against their corresponding 50% (dark orange
ribbons) and 95% (light yellow ribbons) credible intervals as obtained from
the ppd: also from this plot we do not notice particular signs of model's
misfits, and this is also suggested by the empirical coverage in Output 25,
equal to 0.968.

Other useful PP checks designed to reveal model's inconsistencies, such
as the overlap between data density estimation and replicated data densities
estimations obtained from the ppd, can be obtained through the standard use
of the bayesplot package, for instance providing an approximation to a
continuous distribution using an input kernel choice (bw = 0.5 in the
ppc_dens_overlay function) as reported in Code Snippet 28.

Code Snippet 28 Italian Serie A 2009/2010: goal-difference. ⏎

## PPC densities overlay with the bayesplot package

# extracting the replications

 

sims <-rstan::extract(biv_stan$fit)

goal_diff <- italy_2009$home_goals-italy_2009$away_goals

 

# plotting data density vs replications densities



ppc_dens_overlay(goal_diff, sims$y_rep[,,1]-sims$y_rep[,,2], 

bw = 0.5)

Long Description for Output 27

Output 27:  Italian Serie A 2009/2010: density estimation for the observed
goal difference (dark grey line) against the distribution of the goal
difference (light grey lines) from the ppd of the static bivariate Poisson
model.⏎

From the plot reported in Output 27 above we get the empirical
confirmation that the goal difference is well captured by the static bivariate
Poisson model.

4.5.7 Model comparison with the loo package



Comparing statistical models in terms of some predictive information
criteria should be conclusive in terms of model selection and may be
carried out by using the leave-one-out cross-validation criterion (LOOIC)
and the Watanabe Akaike Information criterion (WAIC)—see Chapter 2,
Sections 2.9.3.2 and 2.9.3.3—performed by using the loo package. For
more details about LOOIC and WAIC and other information criteria, see
Gelman et al. (2014); Vehtari et al. (2017).

The general formulation for the predictive information criteria, such as
the classical AIC and BIC, is the following:

where:

êlpd is the estimate of the expected log predictive density of the fitted
model;

l̂pd is a measure of the log predictive density of the fitted model;

parameters penalty is a penalization accounting for the effective number
of parameters of the fitted model.

The canonical interpretation is that the lower the information criterion,
and the better is the estimated model's predictive accuracy. Moreover, if two
competing models share the same value for the log predictive density, the
model with less parameters is favoured, due to the well-known Occam's
rasor.

We can perform some Bayesian model comparisons by using the loo and
waic functions of the loo package. We compare the vanilla double Poisson
model, the two static bivariate Poisson models—the one with default priors

crit = −2êlpd = −2(l̂pd − parameters penalty),



and the other with student-t and half-Laplace priors proposed in Section
4.5.3—and the weekly dynamic bivariate Poisson model in Section 4.5.2
fitted on the Italian Serie A 2009/2010, as reported in Code Snippet 29.

Code Snippet 29 Italian Serie A 2009/2010: model comparisons. ⏎

### Model comparisons

## LOOIC, loo function

 

# extract pointwise log-likelihood

log_lik_dp <- extract_log_lik(dp_stan$fit)             #   

static dp

log_lik_dp_dyn <- extract_log_lik(dp_stan_dyn$fit)     #   

dynamic dp

log_lik_biv <- extract_log_lik(biv_stan$fit)           #   

static biv-pois

log_lik_biv_t <- extract_log_lik(biv_stan_t$fit)       #   

static biv pois t

log_lik_biv_dyn <- extract_log_lik(biv_stan_dyn$fit)   #   

dynamic biv-pois

 

# compute loo

loo_dp <- loo(log_lik_dp)

loo_biv <- loo(log_lik_biv)

loo_biv_t <- loo(log_lik_biv_t)

loo_dp_dyn <- loo(log_lik_dp_dyn)

loo_biv_dyn <- loo(log_lik_biv_dyn)

 



# compare five looic

compare(loo_dp, loo_biv,

        loo_biv_t, loo_dp_dyn, loo_biv_dyn)

According to the above LOOIC comparisons in Table 4.3, where the
second column reports the effective number of parameters estimated for
each model and the third column indicates the corresponding LOOIC value,
the static vanilla double Poisson model attains the lowest LOOIC value
(2138.7) and is then the best model in terms of predictive accuracy; the
bivariate Poisson with student-t and half-Laplace prior reports a LOOIC of
2139.7, whereas the weekly dynamic models report higher LOOICs, 2143.2
for the double Poisson and 2145.8 for the bivariate Poisson, respectively.
Regarding the effective number of parameters, this value in the static
models is approximately equal to 17 or 18, lower than the dynamic models,
approximately equal to 22. For more details about these values, we invite
the interested reader to consult the work of Vehtari et al. (2017) for more
and deep details about LOOIC and some related measures. Despite the
supremacy of the static models in this dataset, it is likely that in other
datasets/seasons the assumption of static team-specific parameters and goal
independence could result to be too restrictive and oversimplified to capture
teams' skills over time and get the best predictive performance in terms of
LOOIC/WAIC. Another aspect related to the given dataset is that the Italian
Serie A usually yields an extent of under-dispersion in the scores data due
to a defensive style of playing, and this happens also for the 2009/2010
season: the average home goal per match is 1.54, with a variance of 1.34,
whereas the average away goal per match is 1.07 with a standard deviation
of 0.99—we remind that the average number of goals and its variance are
the same according to the Poisson distribution.



TABLE 4.3
Italian Serie A 2009/2010: model comparisons via LOOIC.
The second column reports the effective number of
parameters as estimated through the procedure⏎

Model Eff. parameters LOOIC
Vanilla double Poisson 18.6 2138.7
Biv. Poisson (student-t priors) 16.7 2139.7
Biv. Poisson (default priors) 17.4 2139.9
Dynamic double Poisson 22.0 2143.2
Dynamic bivariate Poisson 22.7 2145.8

Anyway, combining these predictive comparisons with the model
checking procedures proposed in Section 4.5.6 for the static models, it is
evident how static team-specific models capture well the nature of the data;
more in specific, the vanilla double Poisson model, as largely documented
in previous chapters, is pretty adequate and may be used as a relevant
milestone for these kinds of data, since it implies small computational costs
and gives overall good fitting results.



4.6 Summary and closing remarks of Chapter 4

Fitting a goal-based model in R either with classical or Bayesian methods is
an easy task. Unless one wants to write its own model, the package
footBayes represents a unique tool that provides some simple and
automatic functions to estimate a model, graphically display the estimates,
check the model, and make out-of-sample predictions.

Section 4.1 explains how to install the package from CRAN, whereas the
list of available basic models is detailed in Section 4.2, perhaps the user can
choose one among the following models—some of them will be covered in
Chapter 5—: double Poisson, bivariate Poisson, diagonal-inflated bivariate
Poisson, Skellam, zero-inflated Skellam, and student-t. The basic syntax of
the main functions is thoroughly provided in Section 4.3. Double Poisson,
bivariate Poisson and dynamic extensions are proposed in Sections 4.4.1,
4.4.2, and 4.4.3.

Section 4.5 presents a long case-study using the Italian Serie A
2009/2010 data. Double and bivariate static Poisson models are fitted in
Section 4.5.1, and the team-specific abilities are therein plotted. A dynamic
modelling extension is proposed in Section 4.5.2, whereas the change of the
default prior distributions is the core of Section 4.5.3. Out-of-sample
predictions obtained through the posterior predictive distributions are
introduced in Section 4.5.4, whereas the retrospective reconstruction and
the prediction of the final rank league table are provided in Section 4.5.5.
Some Bayesian goodness-of-fit measures are detailed in Section 4.5.6,
whereas Section 4.5.7 compares the basic models in terms of the leave-one-
out cross-validation information criterion (LOOIC).



5
Additional statistical models for the
scores

DOI: 10.1201/9781003186496-5

The art of posing a statistical model for a football match means specifying a random
mechanism governing the final observed result. According to the existing football
literature, and as broadly remarked in the previous chapters, the task may be
accomplished via a goal-based approach for the number of goals, or via a result-
based approach for the final result—home win, draw, away win. Although there is
not a clear supremacy of one approach over the other, in this book we propose the
main models formulated under the first framework, given their huge relevance in
the scientific literature about football. To this aim, we proposed the two basic goal-
based models, the double and the bivariate Poisson, in Chapter 4, and we showed
how to fit them according to both maximum likelihood and MCMC methods.

We still denote with (Yi1,Yi2) the random variables representing the number of
goals scored by the home and the away team in the i-th game, i ∈ {1, … ,n},
respectively, where n is the total number of games—or matches, observations; the
pair (yi1, yi2) denotes instead the observed number of goals for game i. The purpose
of this Chapter is to introduce some more additional models accounting for draw
inflation, goal correlation, and the inclusion of further covariates such as the ranking
measures.

5.1 Other models available in footBayes

https://doi.org/10.1201/9781003186496-5


5.1.1 Diagonal-inflated bivariate Poisson

One of the main concerns in the implementation of double Poisson and bivariate
Poisson models regards the so-called draw inflation, namely the natural tendency of
these models to underestimate the observed number of draws arising in football
data, as broadly anticipated in Section 2.8.3 of Chapter 2. As illustrated later in this
Chapter in Section 5.4.1, the scaled double Poisson model (5.12) proposed by Dixon
and Coles (1997) in the previous section is an inflated model attempt which actually
inflates some occurrences (0-0, 1-0, 0-1, 1-1), including also some low scoring
draws such as 0-0 and 1-1, by adding a further parameter. Nonetheless, one may
want to deal with more general models accounting for scores' dependence and able
to improve the fit on the counts of draws. Following this intuition, Karlis and
Ntzoufras (2003) propose a general modelling formulation which inflates the
probabilities of draws, where a draw between two teams is represented by the
outcomes on the diagonal of the probability table. To correct for the excess of draws
one could add an inflation component on the diagonal of the probability function:
the resulting model is an extension of the simple zero-inflated model that allows for
an excess in 0-0 draws (Li et al., 1999). Then, an inflation of the draws probabilities
designed to capture the draw occurrences could yield better models and allows for
overdispersed, relative to the simple Poisson distribution, marginal distributions.

We consider the bivariate Poisson (4.16) in Chapter 4, Section 4.4.2, as the
starting model, a diagonal-inflated model is then specified by the following
probabilistic law:

(5.1)

where D(y1, θ) is a discrete distribution with parameter vector θ and p is the
probability of drawn inflation; useful choices for D(y1, θ) are the geometric, the

fY1,Y2(y1, y2) = {(1 − p)BP(y1, y2|λ1,λ2,λ3),    y1 ≠ y2

(1 − p)BP(y1, y2|λ1,λ2,λ3) + pD(y1, θ),    y1 = y2,



Poisson, or even the Bernoulli distribution. Such models can be fitted by using the
EM algorithm algorithm—see Section 2.3.2 in Chapter 2.

Although univariate zero-inflated Poisson regression models have been
developed and examined in detail (Lambert, 1992; Böhning et al., 1999),
multivariate extensions, similar to the models proposed in this paper, are relatively
rare with the exception of Li et al. (1999); Gan (2000); Walhin (2001).

There are two important properties of such models. Firstly, the marginal
distributions of a diagonal-inflated model are not Poisson distributions but mixtures
of distributions with one Poisson component. Secondly, if λ3 = 0 —corresponding
to the double Poisson distribution (4.1)—the resulting inflated distribution
introduces a degree of dependence between the two variables under consideration.
For this reason, diagonal inflation may correct both the overdispersion and the
correlation problems that are usually encountered in modelling football games and,
as claimed by Karlis and Ntzoufras (2003), these models usually provide a better fit
on football data.

5.1.1.1 Implementation in footBayes

In footBayes the user can fit a diagonal-inflated bivariate Poisson model, via HMC
estimation, through the following code in Code Snippet 30 using the stan_foot
function, whose summary is reported in Output 28.

Code Snippet 30 Italian Serie A 2009/2010: DIBP model. ⏎

### Other models

## Diagonal-inflated bivariate Poisson

 

dibiv_stan <- stan_foot(data = italy_2009,

                        model= "diag_infl_biv_pois",

                        home_effect = TRUE)

print(dibiv_stan, pars = c("home", "rho", "sigma_att",

                           "sigma_def", "prob_of_draws"))



Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

              mean se_mean   sd  2.5%    25%   50%   75% 97.5% n_eff 

Rhat

home          0.42    0.00 0.05  0.32  0.38  0.42  0.45   0.51 4383 

1

rho          -4.22    0.01 0.45 -5.15 -4.52 -4.19 -3.89  -3.42 5810 

1

sigma_att     0.21    0.00 0.06  0.11  0.17  0.20  0.25   0.35 1240 

1

sigma_def     0.12    0.00 0.06  0.02  0.07  0.11  0.15   0.24  302 

1

prob_of_draws 0.24    0.00 0.02  0.20  0.23  0.24  0.26   0.29 5391 

1

Output 28: Italian Serie A 2009/2010: model's summary of the diagonal inflated
bivariate Poisson from stan_foot. Posterior estimates for the selected parameters. ⏎

A dynamic version of the model allowing for weekly dynamic team-specific
abilities can be estimated through the same function as shown in Code Snippet 31.
The model's summary is reported in Output 29.

Code Snippet 31 Italian Serie A 2009/2010: dynamic DIBP model. ⏎

dibiv_stan_dyn <- stan_foot(data = italy_2009,

                            model= "diag_infl_biv_pois",

                            home_effect = TRUE,

                            dynamic_type = "weekly")



print(dibiv_stan_dyn, pars = c("home", "rho", "sigma_att",

                               "sigma_def", "prob_of_draws"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

              mean se_mean   sd  2.5%   25%   50%   75% 97.5% n_eff 

Rhat

home          0.41    0.00 0.05  0.31  0.38  0.41  0.45  0.51 3084 

1.01

rho          -4.22    0.01 0.46 -5.24 -4.51 -4.20 -3.90 -3.40 3527 

1.00

sigma_att     0.04    0.00 0.01  0.02  0.03  0.04  0.05  0.07   11 

1.39

sigma_def     0.03    0.00 0.01  0.02  0.03  0.03  0.04  0.06   25 

1.14

prob_of_draws 0.24    0.00 0.02  0.20  0.23  0.24  0.26  0.29 3297 

1.00

Output 29: Italian Serie A 2009/2010: model's summary of the dynamic diagonal
inflated bivariate Poisson from stan_foot. Posterior estimates for the selected
parameters. ⏎

In the fits above in Outputs 28 and 29, the prob_of_draws parameter denotes the
parameter p to inflate draw occurrences in Equation (5.1). In terms of model
comparison with the basic models in Chapter 4, the LOOIC reported by the
diagonal-inflated bivariate Poisson model is 2541.8 (with a number of 15.6
estimated parameters), whereas for the dynamic version the LOOIC is 2546.5 (with
18.7 estimated parameters). In any case, these values appear to be much greater than



the values reported by the basic models in Section 4.5.7 in Chapter 4: for such
reason, diagonal inflation seems to be not very relevant in this dataset. As another
empirical confirmation, the bivariate Poisson model is able to adequately capture
the draws as shown in Output 27 in the previous Chapter.

5.1.2 Skellam

In some circumstances it could be convenient to work with the goal (score)-
difference Z = Y1 − Y2, i.e. the difference of the goals scored by the two
competing teams, in place of the two marginal scores. The new discrete random
variable Z is defined on the set of integer numbers 
Z = {… , −3, −2, −1, 0, 1, 2, 3, …}. We suppose that Y1 and Y2 jointly follow the
bivariate Poisson distribution (4.15), with parameters λ1,λ2 and λ3. Since 
P(Z = z) = P(Y1 − Y2 = z) = P(X1 + X3 − X2 − X3 = z) = P(X1 − X2 = z)

, the probability function of Z is independent of λ3 and is the same as that derived
from two conditionally independent Poisson variables. Thus, Z follows a discrete
probability distribution known as the Skellam (Skellam, 1946), or Poisson-
difference, distribution, denoted by PD(λ1,λ2), whose analytical form is given by:

(5.2)

where z = … , −3, −2, −1, 0, 1, 2, 3, …, and Ir(x) denotes the modified Bessel
function (Warrick, 1974) defined by:

(5.3)

fZ(z) = Pr(Z = z) = exp{−(λ1 + λ2)}( λ1

λ2
)

z/2

Iz{2√λ1λ2},

Ir(x) = ( x
2
)
r ∞

∑
k=0

(x2/4)k

k!Γ(r + k + 1)
.



Karlis and Ntzoufras (2003, 2009) propose then to model the goal-difference
between the football scores for match i as:

(5.4)

where the specification for the scoring rates λi1 and λi2 in terms of offensive and
defensive strengths and home effect is the same as for the double Poisson model in
(4.2). Identifiability constraints (4.10)–(4.14) can be applied for this model
analogously as for the other Poisson models.

Although the Skellam distribution was originally derived as the difference
between two conditionally independent Poisson random variables, since the
distribution of Z does not depend on the correlation parameter λ3, treating the
number of goals independently for each team leads to an overestimation of model
parameters (Karlis and Ntzoufras, 2003). In fact, we should keep in mind that, since
the parameters λ1 and λ2 are estimated from the marginal distributions, the
covariance parameter λ3 is confounded. For such a reason, we should examine the
effects from a model misspecification: if the true underlying model is the bivariate
Poisson model, but we use instead the double Poisson model, we assume that the
difference follows Z = Y1 − Y2 ∼ PD(λ1 + λ3,λ2 + λ3) instead of the correct 
Z ∼ PD(λ1,λ2). As explained by Karlis and Ntzoufras (2003), the primary effect
of this misspecification is that the probability of a draw under a bivariate Poisson
model is larger than the corresponding probability under the double Poisson model
even if λ3 is quite small, such as 0.1, which is about the observed covariance in
football; moreover, the draw probabilities increase for higher values of λ3. This fact
is an empirical confirmation that the bivariate Poisson model, if compared with the
double Poisson, improves over the draw inflation too. To sum up, although the type
of the goal difference distribution will be the same regardless of the existence or the

Zi|λi1,λi2   ∼  PD(λi1,λi2),

log(λi1) = μ + home + atthi
+ defai ,

log(λi2) = μ + attai + defhi
,



type of association between the two variables, this does not imply that the parameter
estimates and their interpretation will be the same. As remarked by Karlis and
Ntzoufras (2006), the Skellam model can be effectively estimated by use of MCMC
methods with sampling augmentation schemes.

5.1.2.1 Implementation in footBayes

In footBayes the user can estimate a Skellam model by using both the maximum
likelihood and the Bayesian approach via the following code in Code Snippet 32.
The summary is reported in Output 30.

Code Snippet 32 Italian Serie A 2009/2010: Skellam model. ⏎

### Skellam

 

## Static

skellam_stan <-  stan_foot(data = "italy_2009",

                           model= "skellam",

                           home_effect = TRUE)

print(skellam_stan, pars = c("home", "sigma_att", "sigma_def"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

          mean se_mean   sd 2.5%  25%  50%  75% 97.5%  n_eff Rhat

home      0.32       0 0.05 0.22 0.29 0.33 0.36 0.43   3886  1.00

sigma_att 0.19       0 0.08 0.05 0.13 0.18 0.23 0.36    415  1.00

sigma_def 0.20       0 0.09 0.05 0.14 0.19 0.26 0.39    356  1.01



Output 30: Italian Serie A 2009/2010: model's summary for the Skellam model
from stan_foot. Posterior estimates for the selected parameters. ⏎

A dynamic Skellam model can be easily fitted as documented in Code Snippet
33. The model's summary is the reported in Output 31.

Code Snippet 33 Italian Serie A 2009/2010: dynamic Skellam model. ⏎

## Dynamic

 

skellam_stan_dyn <-  stan_foot(data = italy_2009,

                               model= "skellam",

                               home_effect = TRUE,

                               dynamic_type = "weekly")

print(skellam_stan_dyn, pars = c("home", "sigma_att", "sigma_def" 

))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

          mean se_mean   sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

home      0.32    0.00 0.05 0.21 0.29 0.32 0.36 0.43 785 1.01

sigma_att 0.04    0.01 0.01 0.02 0.03 0.03 0.04 0.06   4 1.53

sigma_def 0.05    0.01 0.02 0.02 0.04 0.05 0.06 0.08   6 1.55

Output 31: Italian Serie A 2009/2010: model's summary for the dynamic Skellam
model from stan_foot. Posterior estimates for the selected parameters. ⏎

The home parameter for the home-effect in Outputs 30 and 31 is estimated to be
about 0.32 according to both the modelling version, the static and the dynamic one.



Similarly to what happened for the dynamic models in Chapter 4, the standard
deviations parameters for the attacking and defensive skill just reached a partial
convergence, being the Gelman-Rubin statistic slightly higher than 1.1: in this case,
augmenting the number of HMC iterations could help.

The attacking and defensive skills under the static Skellam and the dynamic
Skellam model are plotted in Figures 5.1 and 5.2, respectively, as obtained by using
the foot_abilities function: the results appear to be quite consistent with those
already discussed in Chapter 4 for the basic models, although the amount of
shrinkage is greater in the Skellam models: this happens because the Skellam model
captures the team-specific abilities in terms of the goal difference and not in terms
of number of goals, which makes their estimation somehow less precise—a draw 0-
0 counts equally as a draw 4-4 here.



Long Description for Figure 5.1

FIGURE 5.1
Italian Serie A 2009/2010: 50% (thicker segments) and 95% (thinner segments)
credible intervals for attacking (red lines) and defensive (blue lines) team-specific
abilities in the static Skellam model.⏎



Long Description for Figure 5.2

FIGURE 5.2
Italian Serie A 2009/2010: 50% credible intervals (grey ribbons) for attacking (red
curves) and defensive (blue curves) team-specific abilities in the dynamic Skellam
model.⏎

5.1.3 Zero-Inflated Skellam

As suggested by Karlis and Ntzoufras (2009), analogously as for the bivariate
Poisson model, the Skellam model (5.4) could be extended to better capture draws'
occurrences: the zero-inflated version of the Skellam distribution could be in fact
proposed to model an eventual excess of draws in the data. Hence, we can define
the zero-inflated Skellam/Poisson difference (ZPD) probability function as:

fZ(z) = {p + (1 − p)PD(z|λ1,λ2),    z = 0

(1 − p)PD(z|λ1,λ2),    z ≠ 0,



(5.5)

where p ∈ (0, 1) is the draw inflation probability. In statistical notation, we
denote with Zi ∼ ZPD(λi1,λi2, p) the goal difference distributed with a ZPD
density function.

5.1.3.1 Implementation in footBayes

The Bayesian estimation for a zero-inflated Skellam model can be produced in
footBayes through the following code reported in Code Snippet 34. The model's
summary is reported in Output 32.

Code Snippet 34 Italian Serie A 2009/2010: ZPD model. ⏎

## Zero-inflated Skellam

# Static

zeroinfl_skellam_stan <-  stan_foot(data = italy_2009,

                                    model= "zero_infl_skellam",

                                    home_effect = TRUE)

print(zeroinfl_skellam_stan, pars = c("home", "sigma_att",

                                      "sigma_def", 

"prob_of_draws"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

              mean se_mean   sd  2.5% 25%     50%   75% 97.5% n_eff 

Rhat

home          0.34       0 0.06 0.23 0.30   0.34   0.38 0.44   3727 



1.00

sigma_att     0.19       0 0.08 0.05 0.13   0.19   0.24 0.36    416 

1.01

sigma_def     0.20       0 0.09 0.05 0.14   0.20   0.26 0.39    435 

1.01

prob_of_draws 0.03       0 0.02 0.00 0.01   0.03   0.04 0.08   4051 

1.00

Output 32: Italian Serie A 2009/2010: model's summary of the zero-inflated
Skellam model from stan_foot. Posterior estimates for the selected parameters. ⏎

The user can easily fit a Bayesian dynamic zero-inflated Skellam model through
the code contained in Code Snippet 35. The model's summary is reported in Output
33.

Code Snippet 35 Italian Serie A 2009/2010: dynamic ZPD model. ⏎

# dynamic

zeroinfl_skellam_stan_dyn <-  stan_foot(data = italy_2009,

                                        model= "zero_infl_skellam",

                                        home_effect = TRUE,

                                        dynamic_type = "weekly")

print(zeroinfl_skellam_stan_dyn, pars = c("home", "sigma_att",

                                          "sigma_def", 

"prob_of_draws"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

              mean se_mean   sd 2.5% 25%     50%    75% 97.5% n_eff 



Rhat

home          0.34       0 0.06 0.23 0.30   0.34   0.38 0.45    613 

1.01

sigma_att     0.02       0 0.01 0.01 0.01   0.02   0.03 0.05      6 

2.01

sigma_def     0.05       0 0.02 0.02 0.04   0.05   0.06 0.08     12 

1.46

prob_of_draws 0.03       0 0.02 0.00 0.01   0.03   0.04 0.08   3272 

1.00

Output 33: Italian Serie A 2009/2010: model's summary of the dynamic zero-
inflated Skellam model from stan_foot. Posterior estimates for the selected
parameters. ⏎

As it is evident from the Outputs 32 and 33, the home effect home for the
dynamic version is basically the same as for the basic Skellam model, whereas the
prob_of_draws parameter appears to be very close to zero, suggesting a low
evidence of draw inflation.

5.1.4 Student-t model

As mentioned with regard to the Skellam model in the previous sections, modelling
the goal difference in place of the marginal scores could yield some advantages.
First, one could implicitly assume scores' correlation without a direct specification;
second, modelling only one single process is simpler than modelling two
conditionally independent processes or a bivariate structure; third, the goal
difference is defined on the support Z = {… , −3, −2, −1, 0, 1, 2, 3, …}, for such
a reason it could be approximated by a continuous distribution with support in R,
such as a Gaussian distribution. However, approximating the score difference with a
continuous distribution could oversimplify the problem, since the knowledge
obtained from the score difference is less sophisticated than the knowledge arising
from the marginal scores: for instance, a draw could be caused by one, two, three,
etc. scores for each of the two competing teams. Thus, a model for the goal



difference could be less effective in estimating the offensive and defensive
strengths, as already mentioned in Section 5.1.2.

By following this streamline, fitting a continuous model for the goal difference
could represent a sound alternative method with respect to a discrete distribution.
Gelman (2014) and Kharratzadeh (2017) suggest the use of a student-t distribution
with ν ∈ R

+ degrees of freedom, location μ ∈ R, and scale σ ∈ R
+ as follows:

(5.6)

Thus, we could model the score difference Zi for match i,  i = 1, … ,n as
follows:

(5.7)

where hi and ai team denote as usual the home and the away team in match i,
respectively; abilityk measures the global ability for the k-th team, and home is the
usual home effect. Kharratzadeh (2017) frames model (5.7) in the Bayesian
framework, by proposing the following weakly informative prior distributions
(Gelman et al., 2008):

fZ(z) =
Γ((ν + 1)/2)

Γ(ν/2)

1

√νπσ
(1 +

1

ν
( y − μ

σ
)

2

)
−(ν+1)/2

.

Zi|ν,μi,σ   ∼  tν(μi,σ),

μi   =  home + abilityhi
− abilityai ,



(5.8)

Analogously to the attack/defence parameters for the Poisson-based models, a STZ
identifiability constraint needs to be imposed to the global abilities, such as:

(5.9)

As mentioned in Chapter 2 through Equation (2.4), it is easy to state a functional
relationship between the global abilities of the student-t model (5.7) and the
offensive/defensive parameters in the Poisson-based models (4.2), (4.16) as follows:

(5.10)

thus the global ability for the team k is given by the difference between the
offensive and the defensive strengths: the higher attk − defk, and the higher is the
global ability for the team—we stress again that the parameter def represents the
defensive weakness, and can be seen as the negative strength. From Equations
(5.10) one could build some analogous a posteriori measures of global abilities for

abilityk ∼ N(β,σ2
a),

ν ∼ Gamma(2, 0.1),

σ ∼ N(0, 52),

σa ∼ N(0, 1),

home ∼ N(0, 1),

β ∼ N(0, 1).

K

∑
k=1

abilityk = 0.

abilityk =  (attk − defk),



the Poisson-based models as well, by using the estimates for the parameters att and
def previously obtained, as remarked by Equation (2.4).

5.1.4.1 Implementation in footBayes

The student-t model can be estimated in footBayes through the following code in
Code Snippet 36. The model's summary is reported in Output 34

Code Snippet 36 Italian Serie A 2009/2010: student-t model. ⏎

## Student-t

 

# static

student_stan <- stan_foot(data = italy_2009,

                          model= "student_t")

print(student_stan, pars= c("home", "beta", "sigma_a", "sigma_y"))

Summary of Stan football model

------------------------------

 

Posterior summaries for model parameters:

         mean se_mean   sd   2.5%    25%     50%    75%    97.5% 

n_eff   Rhat

home    0.48   0.00    0.07 0.34    0.43    0.48    0.53   0.62 

1459    1.00

beta    0.04   0.06    2.57 -4.93 -1.72     0.056   1.81   5.08 

1591    1.00

sigma_a 0.64   0.10    0.69 0.03    0.13    0.38    0.95   2.52 

43    1.09



sigma_y 1.19   0.00    0.05 1.09    1.16    1.19    1.23   1.29 

1840    1.00

Output 34: Italian Serie A 2009/2010: model's summary of the student-t model from
stan_foot. Posterior estimates for the selected parameters. ⏎

The dynamic student-t model allowing for dynamic team-specific abilities could
be estimated through the code in Code Snippet 37. The model's summary is reported
in Output 35.

Code Snippet 37 Italian Serie A 2009/2010: dynamic student-t model. ⏎

# dynamic

student_stan_dyn <- stan_foot(data = italy_2009,

                              model= "student_t",

                              dynamic_type = "weekly")

print(student_stan_dyn, pars= c("home","beta", "sigma_a", 

"sigma_y"))

Summary of Stan football model

------------------------------

 

Posterior summaries for   model parameters:

         mean se_mean      sd   2.5%    25%    50%    75%   97.5% 

n_eff   Rhat

home    0.48   0.00       0.07 0.35    0.43   0.48   0.52   0.60 

2729    1.00

beta    0.08   0.04       2.46 -4.84 -1.55    0.04   1.69   4.94 

3200    1.00

sigma_a 0.17   0.09       0.16 0.02    0.05   0.09   0.27   0.60 

3    2.27



sigma_y 1.18   0.00       0.05 1.08    1.14   1.18   1.21   1.29 

1730    1.00

Output 35: Italian Serie A 2009/2010: model's summary of the dynamic student-t
model from Stan. ⏎

The global abilities in Equation (5.8) for the static student-t and the dynamic
student-t model are plotted in Figure 5.3 and 5.4, respectively, through the
foot_abilities function: by inspecting both the figures, one could realize that higher
abilities correspond to the best teams (Inter, AS Roma, AC Milan, Sampdoria),
whereas lower abilities correspond to the weakest teams (Livorno, Siena, Atalanta)
in the league.



Long Description for Figure 5.3

FIGURE 5.3
Italian Serie A 2009/2010: 50% (thicker lines) and 95% (thinner lines) credible
intervals for the global abilities in the static student-t model.⏎



Long Description for Figure 5.4

FIGURE 5.4
Italian Serie A 2009/2010: 50% credible intervals for the global abilities in the
dynamic student-t model.⏎

5.2 Model comparison between goal-difference models

We can perform a final model comparison for the goal difference models: in fact,
we must take this task separated from the comparison between the goal-based
models in Chapter 4 and the diagonal-inflated bivariate Poisson model in Section
5.1.1 because we deal with models based on distinct response variables, the number
of scores and the goal difference, respectively. Thus, one could still use the loo
package to perform this task as shown in Code Snippet 38. The results of this
comparison are shown in Table 5.1.

TABLE 5.1



Italian Serie A 2009/2010: comparisons via LOOIC for the
goal difference models. The second column reports the
effective number of parameters as estimated through the
procedure⏎

Model Eff. parameters LOOIC
Student-t 17.2 1328.6
Dynamic student-t 28.5 1332.7
Skellam 6.5 1380.7
Zero-infl. skellam 7.0 1382.4
Dynamic Skellam 6.9 1383.2
Dynamic zero-infl. Skellam 7.4 1384.8

Code Snippet 38 Italian Serie A 2009/2010: goal-difference models. ⏎

### model comparisons

## LOOIC, loo function

 

# extract pointwise log-likelihood

 

# static skellam

log_lik_skellam <- extract_log_lik(skellam_stan$fit)

 # dynamic skellam

log_lik_skellam_dyn <- extract_log_lik(skellam_stan_dyn$fit)

# static zeroinfl skellam

log_lik_zeroinfl_skellam <- 

extract_log_lik(zeroinfl_skellam_stan$fit)

# dynamic zeroinfl skellam

log_lik_zeroinfl_skellam_dyn

                       <- 

extract_log_lik(zeroinfl_skellam_stan_dyn$fit)

# static student



log_lik_student <- extract_log_lik(student_stan$fit)

# dynamic student

log_lik_student_dyn <- extract_log_lik(student_stan_dyn$fit)

 

# compute loo

 

loo_skellam <- loo(log_lik_skellam)

loo_skellam_dyn <- loo(log_lik_skellam_dyn)

loo_zeroinfl_skellam <- loo(log_lik_zeroinfl_skellam)

loo_zeroinfl_skellam_dyn <- loo(log_lik_zeroinfl_skellam_dyn)

loo_student <- loo(log_lik_student)

loo_student_dyn <- loo(log_lik_student_dyn)

 

# compare six loo

 

compare(loo_skellam, loo_skellam_dyn,

        loo_zeroinfl_skellam, loo_zeroinfl_skellam_dyn,

        loo_student, loo_student_dyn)

The static student-t model in Table 5.1 attains the lowest LOOIC value, 1328.6,
whereas the dynamic version of the zero-inflated Skellam model yields the highest
value, 1384.8: from this comparison as well, we can claim that according to this
Serie A dataset the simpler the better: the student-t model with static team-specific
abilities performs better than any other more complicated model. In general, the
user should compare these model performances on other alternative datasets.

5.3 Adding covariates

In the current literature about football analytics the inclusion and use of covariates
has not been always fully addressed; in fact, the most commonly adopted and well-



known football models are usually “vanilla” versions—see Chapter 2, Sections
2.1.2 and 2.1.3 for further details— that just use the teams' indicators and their
latent abilities without considering any extra explanatory information for modelling
and predicting the final football outcomes. However, the use of some relevant
covariates regarding the matches, teams, and players along the season could
dramatically improve the goodness of fit and offer new insights for the modern
football modelling strategies. Models with covariates could in fact benefit from
using information from earlier seasons, from experts such as bookmaker companies,
or directly use some tracking data at the individual level, such as the number of
passes, the number of shots, the position, and so on.

In the recent years, propose to include some among the following covariates in
the well-known Poisson-based workflow:

average numbers of goals scored and conceded by every single team, indexed by
period prior to the current match, season and division;

teams' average recent results;

match importance;

geographical distance between the home stadium and the away stadium;

goals scored/conceded in the most recent matches.

Following the arguments in Chapter 2, Section 2.1.1, we denote the covariates as
follows:

X (1): n × K matrix containing the home team/“team one” covariates for each
match-team pair (i, j);

X (2): n × K matrix containing the away team/“team two” covariates for each
match-team pair (i, j);

U: other covariates (still in a matrix form), not directly related to the teams.

The inclusion of these covariates in the Poisson-based models is straightforward,
since it is sufficient to specify some suited functions f1, f2 (for instance, the



exponentiated linear predictors) such that λi⋅ = f⋅(X (1),X (2)). Alternative models
may be formulated by varying the functional shape and the set of the covariates in
the functions f1, f2.

The investigation of candidate covariates likely to improve the fit of the vanilla
football models is out of the scopes of this book. Moreover, the advent of the so
called on-field covariates—running distance, ball possession, number of passes, etc
—and the current availability of tracking data partially transformed the football
analytics field in a big-data framework with a huge number of potential drivers for
the final match outcome. For a quick overview, consult the works of Carpita et al.
(2015), Groll et al. (2018a), and Groll et al. (2021).

However, we feel there is still a lack of a deep theoretical awareness to connect
this huge amount of data with the final match results in order to rely on a coherent
statistical modelling workflow. For such a reason, we prefer to focus on team
indicators and latent abilities and give a transparent overview of the vanilla model
construction, by inviting the interested reader to investigate the potentiality and the
inclusion of more and more explanatory variables in the models. As usually
remarked—see Chapter 2, Section 2.1.4—a well-known issue with the use of further
variables is that the attacking and defensive abilities of the Poisson-based models
are usually strongly confounded with the potentially relevant covariates; moreover,
prediction with additional covariates may be improved but not as much as one
would expect because the abilities capture similar qualities. For tournaments that do
not have a round-robin format and where the teams are separated in different
groups, the vanilla models will not work until we have a cross over between
different groups; in this case, models with covariates perform definitely better. As
we will see in Chapter 6, these tournaments require also a covariate describing the
overall prior ability of the team, such as the FIFA/UEFA ranking coefficient or any
other ranking measure.

Unlike for what happens in national/domestic leagues, such as the Serie A,
Premier League, Ligue One, and so on, where the rosters are observed for many
match-days week after week, some critical issues arise in international matches,
such as those from the Euro Cup, the World Cup or the America's Cup:



the national rosters may highly vary from match to match, depending on the
match type—qualifier, friendly, cup's match—which makes any statistical
analysis more unreliable and noisier;

the number of matches between national teams is much lower than the number of
matches registered in domestic leagues;

compared to domestic leagues, national teams do not play according to a round-
robin style. For instance, to gain the qualification for the next World Cup, the best
European national teams such as France, Germany or Italy are grouped in
different sub-tournaments and expected to play against much lower-level teams,
but not to—or rarely—compete one against the other. This aspect makes the
statistical analysis about national teams intrinsically incomplete;

national teams do not have any kind of economic budget, which instead is highly
correlated with teams' performance in domestic leagues;

international tournaments are usually much more surprising than domestic
leagues. Having the best-rated players does not always imply to be the best
candidate to win an international tournament;

national teams are rated according to an official ranking, the FIFA/Coca-Cola
world ranking, which monitors national teams performance and lists the best
teams by assigning some points to the recent matches results. We will thoroughly
use these rankings in Chapter 6 for case studies regarding the Euro and the World
Cup.

When the focus is the prediction of international matches, the most natural covariate
is represented by the FIFA ranking, eventually rescaled. Specify a bivariate Poisson
model such that the FIFA ranking difference for the i-th match 
xi = rankhi

− rankai  between the competing teams is added/subtracted to the two
scoring rates.

Instead, in a domestic league with an home-effect, introducing a ranking measure
—note that FIFA rankings are not available for domestic leagues, and teams such as



Inter, AS Roma, and so on, thus the user could supply alternative ranking measures
—would lead to extend the vanilla log-linear scores in (2.3):

(5.11)

Alternatively, one could consider the inclusion of a general smoothing function 
f(xi) to capture any kind of non-linearity in the ranking difference covariate.
Various tests showed that, with regard to international matches data, the coefficient
γ is usually highly statistically significant and improves over the fit of the vanilla
model not including this covariate. For more details on this topic, we refer the
interested reader to the work of Macrì Demartino et al. (2024).

5.3.0.1 Implementation in footBayes

In footBayes the user can include a static or a dynamic ranking measure in the
model fit through the optional argument ranking. In case of domestic leagues such
as the Serie A, an appropriate measure of ranking could be represented by the rank
position each team achieved at the end of the previous season. An example is
included in Code Snippet 39, and the corresponding model summary is given in
Output 36.
NOTE: the inclusion of ranking measures in the function stan_foot can be

performed by supplying through the ranking argument either a data frame
containing the teams' ranking measures for distinct match-days or an object of the
class “btdFoot” containing the rankings as previously computed by the Bradely-
Terry-Davidson model (Bradley and Terry, 1952; Davidson, 1970; Macrì Demartino
et al., 2024) through the btd_foot function—type help(stan_foot), help(btd_foot)
in the R console and read the thorough vignette accompanying the package for more
details.

log(λ1i) = μ + home + atthi
+ defai +

γ

2
xi,

log(λ2i) = μ + attai + defhi
−

γ

2
xi.



Code Snippet 39 Italian Serie A 2009/2010: adding ranking covariate. ⏎

### Adding covariates

## Ranking based on Serie A 2008-2009 rank positions

 

ranking_2009 <-  as.data.frame(cbind(rep(1,20),

                               unique(italy_2009$home_team),

                               c(17, 14, 1, 15, 5,

                                 2, 10, 20, 8, 7,

                                 18, 3, 6, 11, 9,

                                 16, 4, 12, 19, 13 )))

colnames(ranking_2009) <- c("periods", "team", "rank_points") # 

rename!

ranking_2009$rank_points <-

      as.numeric(as.vector(ranking_2009$rank_points)) # numeric 

check

 

# HMC fit

dp_stan_rank <- stan_foot(data = italy_2009,

                          model="double_pois",

                          home_effect = TRUE,

                          ranking = ranking_2009) # dp + ranking

print(dp_stan_rank, pars = c("home", "gamma", "sigma_att", 

"sigma_def"))

Summary of Stan football model

------------------------------

 

Posterior summaries for   model parameters:



           mean se_mean     sd  2.5%   25%   50%   75%  97.5%  n_eff 

Rhat

home       0.41    0.00   0.04  0.33  0.38  0.41  0.44   0.49   4224 

1.00

gamma     -0.45    0.00   0.13 -0.71 -0.53 -0.44 -0.36  -0.17    877 

1.00

sigma_att  0.09    0.01   0.05  0.01  0.05  0.08  0.12   0.21    100 

1.05

sigma_def  0.13    0.00   0.06  0.02  0.09  0.13  0.17   0.25    272 

1.01

Output 36: Italian Serie A 2009/2010: model's summary of the double Poisson
model with rankings from stan_foot. Posterior estimates for the selected
parameters. ⏎

A comparison in terms of LOOIC with the simple double Poisson model is
performed in Code Snippet 40 and reported in Output 37.

Code Snippet 40 Italian Serie A 2009/2010: other model comparisons. ⏎

# extract pointwise log-likelihood

log_lik_dp_rank <- extract_log_lik(dp_stan_rank$fit) # static dp + 

rank.

loo_dp_rank <- loo(log_lik_dp_rank)

loo_dp_rank

Computed from 4000 by 380 log-likelihood matrix.

 

         Estimate   SE

elpd_loo -1067.3 16.7

p_loo        14.2 0.8



looic      2134.7 33.3

------

MCSE of elpd_loo is 0.1.

MCSE and ESS estimates assume independent draws (r_eff=1).

 

All Pareto k estimates are good (k < 0.7).

See help(‘‘pareto-k-diagnostic’’) for details.

Output 37: Italian Serie A 2009/2010: LOOIC for the double Poisson model with
the rankings. ⏎

The parameter γ associated to the ranking difference in Output 36 is estimated to
be about –0.45 and its 95% credible interval does not contain the zero: according to
the Equation (5.11), as a matter of illustration the ranking difference between the
home team Inter—the Serie A 2008/2009 winner—and the away team Bari—the
first team promoted from the second Italian league, the Serie B 2008/2009—is 
1 − 18 = −17. The ranking is automatically centred and scaled by the stan_foot
function to have mean 0 and standard deviation 0.5. Thus, since 
xi = rankhi

− rankai = −0.803 + 0.634 = −0.169 in this imaginary match, then 
xi × γ̂/2 = −0.169 × −0.225 = 0.038, which means that the multiplicative effect
on the average scores implied by this ranking difference for Inter is about 
exp{0.038} ≈ 1.039, whereas is about exp{−0.038} ≈ 0.963 for Bari. The
negative sign of the γ coefficient makes then perfectly sense, being 
exp{γ̂/2} = exp{−0.225} = 0.799 the multiplicative effect on the average home-
team scores for an unitary difference of 1 in the (scaled) rankings, which also means
that for every unitary difference in ranking positions there is a 20.1% decrease of
average scores for the home team, and a 25.2% increase of average scores for the
away team—note that the higher (lower) xi, the worse (better) is the home team and
the better (worse) is the away team.

The LOOIC in Output 37 is 2134.7, lower than the LOOIC for the double Poisson
model reported in Section 4.5.7, 2138.7. Although not fully reported here, the
inclusion of such ranking improves the fit in each of the models considered so far:



as it is intuitive, the inclusion of a ranking measure covariate overall improves the
fit of a football model and is then strongly suggested.

5.4 Additional models

5.4.1 Scaled double Poisson from Dixon and Coles (1997)

Although the bivariate Poisson distribution (4.15) is one of the most natural ways to
deal with scores' dependence, Dixon and Coles (1997) argue that the BP model is
not able to represent departures from independence for low scoring games, such as
0-0, 0-1, 1-0, or 1-1. For such a reason they proposed a joint distribution for the pair
(Y1,Y2) by scaling the double Poisson distribution in (4.1) as follows:

(5.12)

where λ1 and λ2 represent the marginal means, whereas the scaling parameter τ is
defined as follows:

(5.13)

The parameter ρ satisfies

fY1,Y2(y1, y2) = Pr(Y1 = y1,Y2 = y2) =

 τλ1,λ2(y1, y2)
λ
y1

1 exp{−λ1}

y1!

λ
y2

2 exp{−λ2}

y2!
,

τλ1,λ2(y1, y2) =

⎧⎪⎨⎪⎩1 − λ1λ2ρ, if y1 = y2 = 0,

1 + λ1ρ if y1 = 0, y2 = 1,

1 + λ2ρ if y1 = 1, y2 = 0,

1 − ρ if y1 = y2 = 1,

1 otherwise.



and enters as a dependence parameter measuring the correlation between the scores,
such that ρ = 0 corresponds to scores' independence, but otherwise the
independence assumption is perturbed for events with y1 ≤ 1 and y2 ≤ 1. The
authors proved that the corresponding marginal distributions remain Poisson with
means λ1 and λ2, respectively. To achieve identifiability, the constraint (4.14) is
applied. By assuming the parametrization (4.3), the likelihood function takes the
following form (proportionality constants have been dropped to ease the
readability):

(5.14)

where λ1 and λ2 are defined as in Equation (4.2)—or, equivalently, as in (4.3)—
except for the fact that μ = 0, then δ = exp{μ} = 1. Inferential conclusions are
provided in Dixon and Coles (1997) by numerical optimization of the likelihood
function (5.14).
NOTE: the implementation of the scaled double Poisson is not guaranteed by the

footBayes package, but one could fit this model by using the regista package, as
shown in the next section.

5.4.1.1 Implementation in regista

The user could fit a scaled double Poisson model through the dixoncoles function
in the regista package—downloaded from GitHub. The maximum likelihood
estimates for the attacking and the defensive abilities are shown in Figure 5.5. In

max (−1/λ1, −1/λ2) ≤ ρ ≤min (1/λ1λ2, 1),

L (α,β, γ, ρ; y1, y2) =
n

∏
i=1

τλ1i,λ2i(yi1, yi2)λyi1
i1 exp{−λi1}λyi2

i2 exp{−λi2}

=
n

∏
i=1

τλi1,λi2(yi1, yi2)(γαhi
βai)

yi1 exp{−(γαhi
βai)}×

  (αaiβhi
)yi2 exp{−(αaiβhi

)},



comparison with the static team-specific abilities from the bivariate Poisson model
in Output 13 and the Skellam model in Figure 5.1, we could note a general
agreement: stronger teams, such as Inter, AS Roma and AC Milan are associated
with the highest abilities, conversely weaker teams, such as AS Livorno, Chievo
Verona, and Atalanta exhibit the worst strengths.

Long Description for Figure 5.5

FIGURE 5.5
Italian Serie A 2009/2010: point estimates for the attacking (red points) and
defensive (blue points) team-specific abilities in the scaled double Poisson model
from Dixon and Coles (1997).⏎



Code Snippet 41 Italian Serie A 2009/2010: scaled double Poisson model.

## Scalde double Poisson

install_github("torvaney/regista")

 

library(regista)

library(arm)

 

dc_fit <- dixoncoles(hgoal = italy_2009$home_goals,

                            agoal = italy_2009$away_goals,

                            hteam = factor(italy_2009$home_team),

                            ateam = factor(italy_2009$away_team),

                            data = italy_2009) # dixon-coles model

5.4.2 The count Weibull model

So far, the majority of the models started from an assumption that the underlying
process was a time-homogeneous Poisson process. In such a process, time between
events (goals) follows an exponential distribution, due to the well-known
relationship between the Poisson and the exponential distribution. Exponential inter
arrival times actually imply that the hazard of a goal remains the same in the entire
match, which can be counter-intuitive. For example, one would expect that the team
that it is behind in score would try harder to equalize and this may change the inter-
arrival distribution. This assumption, however, is a convenient assumption due to
lack of alternatives

In Boshnakov et al. (2017) the inter-arrival times are assumed to follow an
independent and identically distributed Weibull distribution. They based on the
results from McShane et al. (2008).

Let Y (n) be the time at which the n-th event (goal in our case) occurs. Let E(t)

denote the number of events that have occurred up until time t. The relationship
between inter-arrival times and the number of events is



and hence one can derive the discrete probability for the number of events from that
of the distribution assumed for the inter-arrival times, namely

(5.15)

In order to find the distribution of Y (n) it suffices to see that Y (n) =
n

∑
i=1

Yi where

Yi follows the distribution assumed for the inter-arrival times and hence this is the
convolution of independent variates from this distribution.

Assuming a Weibull inter-arrival time distribution, the number of goals has
probability mass function

(5.16)

where α0
j = Γ(cj+1)

Γ(j+1)
, j = 0, 1, …, and αx+1

j =
j−1

∑
m=x

αx
m

Γ(cj−cm+1)
Γ(j−m+1)

 for 

x = 0, 1, 2, … and j = x + 1,x + 2, …. In (5.16), λ is a rate parameter and c is the
shape parameter of the distribution, where the observation unit is the match, which
we take as having a duration of one time unit. Thus, λ is the scoring rate per match.

The associated law with the count process has hazard function h(t) = λctc−1 and
it varies over time while it can have different shapes for different segments of the
match. It can be monotonically increasing for c > 1, monotonically decreasing for 
c < 1, or constant (and equal to λ) for c = 1. Note that we recover the (time-

Y (n) ≤ t ⇔ E(t) ≥ n

Pr(E(t) = n) =  Pr(E(t) ≥ n) =

Pr(E(t) ≥ n + 1) = Pr(Yn ≤ t) − Pr(Yn+1 ≤ t)

Pr(E(t) = x) =
∞

∑
j=x

(−1)(x+j)(λtc)jαx
j

Γ(cj + 1)
,



homogeneous) Poisson process when c = 1 and hence the count Weibull
distribution is the Poisson distribution.

This brings to a new discrete distribution named the Weibull count distribution; it
is different from the discrete Weibull distribution, which is simply based on the
discretization of the Weibull distribution and not in some underlying process like
the one described above. If one prefers some other choices of the underlying inter-
arrival distribution can see Nadarajah and Chan (2018).

It is also interesting to note that this model handles both over-dispersed data—the
mean is smaller than the variance; c < 1 and under-dispersed data—the mean is
larger than the variance; c > 1 —naturally, whilst the Poisson count distribution (
c = 1) can only accommodate equi-dispersed data—the mean is equal to the
variance).

Boshnakov et al. (2017) use this as the marginal distribution to derive a bivariate
model similar to those described in Chapters 4 and 5: a bivariate model can be
described using a copula to couple the two variables (number of goals). They use a a
Frank copula by including covariates in the rate parameters as usual: the
computational steps required to estimate this model can be performed with small
effort by using the R library countr.

5.4.3 The Copula model

A brief discussion about Copulas

As previously remarked, the existence of some sort of dependence between the
goals scored by two teams in a football match is widely accepted. It is also apparent
that one needs to account for that in the modelling phase, as described in Chapter 4.
However, the exact specification of this dependence is less clear. It can be positive
and negative and in general we need to be flexible on that considering models that
allow for a wide range of correlation. Even if it is small, it can have an effect in our
predictions so perhaps we do not have to ignore it.

As we have remarked in the previous sections, existing models try to fit the
correlation either implicitly via the covariates that share common information or



explicitly by allowing for a correlation parameter. For example the bivariate Poisson
in Maher (1982) and introduced in Section 4.4.2 allows only for positive correlation
which has a linear form. Dixon and Coles (1997) show the observed joint
frequencies and compare them under the assumption of independence, by claiming
that that certain cells deviate and perhaps they introduced the extra terms to account
for that. Also the model in Karlis and Ntzoufras (2003) starting from a bivariate
Poisson adds extra correlation from the inflation terms in the diagonal.

An alternative way to incorporate dependence is by using copulas. Copulas can
produce flexible bivariate (multivariate) distributions with flexible marginal
distributions and flexible dependence structure—e.g. we can easily create a
bivariate discrete distribution with negative correlation. Since we can have a great
variety of different copulas, different dependence structures are possible. Copulas
also offer a way of studying scale-free measures of dependence. The cost of using
copulas refers to the added complexity which can be relaxed since there are now
many available packages.

Copulas are bivariate (multivariate) distributions with uniform marginals. They
are fashionable since one can separate the marginal properties from the dependence
properties—caution: this is not true for discrete data however—and hence define
multivariate models with given marginal properties. They have found increasing
application to many disciplines, like biostatistics, finance, hydrology, and literature
is increasing fast.

We refer to copulas as distribution functions whose one dimensional margins are
uniform.

Definition (Nelsen, 2006): Let I = (0, 1). A bivariate copula is a function C from
I

2 to I with the following properties:

1. For every u,v in I

C(u, 0) = 0 = C(0, v) and C(u, 1) = u,C(1, v) = v



2. For every u1,u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2

If C(⋅, ⋅) is considered to be a distribution function of two random variables U
and V, the first condition ensures that U and V have uniform marginal distributions.
The second condition, often referred to as the rectangular inequality, simply requires
that C is a valid distribution function, i.e. Pr(u1 ≤ U ≤ u2, v1 ≤ V ≤ v2) ≥ 0.

Note that if the marginal distribution functions are continuous then the copula is
unique. In the discrete case, the copula is not unique in general but it still permits
the construction of valid parametric statistical models. The difference with the
continuous case is that the copula parameter alone does not characterize the
dependence between the random variables at play (Genest and Nešlehová, 2007).
Nevertheless, since any well-defined copula-based model is a particular instance of
a statistical model, the tools and the methods of the latter can be applied to the
former. When the marginal distributions are discrete, understanding the dependence
structure implied by the fitted copula is somewhat more complex than in the
continuous case due to the possibility of ties (equal marginal values). A thorough
discussion on the use of copulas for discrete data can be found in Nikoloulopoulos
(2013).

For the bivariate case, and using a copula C(⋅, ⋅) with marginal distributions 
F(y1) and G(y2), the bivariate joint probability mass function h(y1, y2) is given by

The choice of a copula family can be guided by the (dependence) properties of
that family. For example, one may seek a dependence structure that is
comprehensive, meaning the copula family can model the full range of dependence
structure with correlation ranging from –1 to 1. Or one may expect to have a larger
correlation for large values, which is known as tail dependence. Different copulas

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.

f(y1, y2) = C(F(y1),G(y2)) − C(F(y1 − 1),G(y2))

− C(F(y1),G(y2 − 1)) + C(F(y1 − 1),G(y2 − 1))



are offering different structures and hence a natural question is which one is better
to use.

The model

McHale and Scarf (2011a) propose a copula model for the number of goals scored
by opposing teams in international soccer matches. International soccer—i.e.
matches between national teams—is not organized into hierarchical leagues and as a
result there are games between teams with a much wider variation in ability. Recall
that, for example, in the group-stage of the preliminaries of the World Cup, different
groups of abilities are formed and one teams from each group is selected. So,
weaker teams play against stronger teams and matches between teams of very
different abilities are frequently observed.

The bivariate discrete distributions employed are defined through copulas. This
allows dependence in the bivariate distribution to be modelled in a flexible manner
by specifying a suitable family of copula functions. A first observation was based
on the fact that typically matches with larger rank difference between teams have
larger correlation and hence there is need for a model that can capture this. Namely,
games between closely ranked teams, the overall dependence is low, and that the
dependence becomes increasingly negative as the competitiveness of a match
decreases.

They used data from 6101 international soccer results for the period 1993-2004.
Marginal means are modelled with match related covariates. They considered both
Poisson and negative binomial marginal distributions. The negative binomial, with
the same overdispersion for each team, is selected based on AIC. Then the two
marginals are coupled with a copula. The family of Archimedean copulas are used
and finally a Frank copula is chosen. The Frank Copula has a cdf defined by

C(u, v) = −
1

θ
log{1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1
},



where θ is the copula parameter taking values in R − {0}. As θ approaches 0 we get
the product copula, which implies independence between the two variables. The
Frank copula allows for both negative and positive dependence. Then the copula
parameter θ is modelled through a linear function, namely

where xi is the difference in the ranking of the two teams as in Equation (5.11), and
β0 and β1 parameters need to be estimated. A value of β1 = 0 implies constant
dependence. The marginal means are modelled using past records of the two teams
and in particular the number of goals scored by the team and the number of goals
conceded in the last eight matches. The number of matches is selected after some
selection procedure. Also a home advantage is assumed, together with a dummy for
matches in neutral field—as it is typical for large tournaments like the World Cup—
plus the ranking difference of the teams. The final results confirm that the
dependence is different depending on the competitiveness of the match as indicated
by the rank difference.

There are some more papers that make use of copulas in football modelling. As
far as modelling the number of goals one can see the works in Lee (1999), which
refers to Australian football but this is the first attempt to model scores with
copulas. Also the work in Boshnakov et al. (2017) and Barbiero (2020) create
bivariate models based on copulas. Another example is given by McHale and Scarf
(2007), where the number of shots made from the two teams are considered. The
shots typically have much larger correlation which is also negative and hence
copulas-based models are of large importance. Finally, Dawson et al. (2007) use
copulas for the joint distribution of red and yellow cards.

θi = β0 + β1xi,



5.5 Summary and closing remarks of Chapter 5

Modelling the result of a football match can be addressed in many alternative ways:
the current chapter provides an overview about some models usually adopted for
football modelling which extend the basic model formulations in Chapter 4. Some
of these specifications involve the use of goal difference as the new response
variable.

The Poisson-based models in Chapter 4 could usually suffer from an
underestimation of the number of draws: an inflated bivariate Poisson version is
proposed in Section 5.1.1 to inflate the draws' occurrence and provide better
estimates. Skellam, zero-inflated Skellam, and student-t models for the goal
difference are proposed in Sections 5.1.2, 5.1.3, and 5.1.4, respectively, along with a
minimal code to fit them through the footBayes package. A thorough model
comparison in terms of leave-one-out predictive information criterion (LOOIC) is
proposed in Section 5.2.

Section 5.3 explains how to add covariates, specifically some ranking measures,
in the previous models for both the scores and the goal difference models.

The scaled double Poisson model from Dixon and Coles (1997) is introduced in
Section 5.4.1.

Going beyond the Poisson-based models and the other models for goal difference,
a count Weibull model for the inter-arrival times of the goals is provided in Section
5.4.2. Finally, Section 5.4.3 focuses on the use of copula models to capture scores'
dependence from a larger perspective.



6
Modelling international matches: The
Euro and World Cups experience

DOI: 10.1201/9781003186496-6

6.1 Data and modelling a knock-out tournament

In Chapters 4 and 5 we showcased the estimation of basic and advanced
goal-based football models via the footBayes package with regard to
domestic leagues, such as the Serie A 2009/2010. However, as remarked in
the previous chapters, modelling a knock-out tournament is rather different
than modelling a national seasonal competition. Thus, we need to take these
considerations in mind when building and fitting a proper statistical model
for a Euro, Asia, Africa, or World cup competition. Many factors contribute
to create such a distinction, we list here the main ones.

Unbalanced number of matches: in international matches data some
teams play more matches, some other teams less. As a consequence,
team-specific abilities will be estimated more or less precisely depending
on the number of matches.

Structure: the structure of Euro and World cups is rather different than a
seasonal championship: a group-stage consisting of four teams is

https://doi.org/10.1201/9781003186496-6


followed by a pure knock-out scheme, usually from the round of sixteen
until the final.

Training set data: a relevant question regards the kind, amount, and
quality of the training set used to train our models in international
matches. Should we consider all the qualifiers and friendly matches
played one, two, three, or four years before the Cup? Should instead we
consider only the qualifiers and official matches? And, quite importantly,
should we consider also the results from the previous Euro/World Cups,
eventually played four, eight or even twelve, if not sixteen, years before?
Even by assuming that a somehow optimal choice of the training set is
made, how to account then for the matches in terms of their relative
importance and/or their chronological order? Maybe, one could weight
the distinct data sources, for instance by supposing that a friendly match
is less important than a qualifier match, and down-weight the matches
further back in time, as proposed by Dixon and Coles (1997) and
reported in equation (5.14).

Individual player evaluation: national teams do not behave as the football
clubs that compete in the domestic leagues. In fact, they cannot buy or
sell some players during the transfer-market. Then, national teams can
exhibit much more rosters' variability than Premier League, Serie A, or
Bundesliga teams across time. As an example, consider that in the
months that precede an important tournament such as the World Cup or
the Euro Cup the national coaches try different players, different schemes
or tactical situations during friendly matches or, say, Nation's League
matches; however, with high chances many of these attempts are not
successful and will not be proposed during the targeted tournament. From
a statistical perspective, it is then not trivial to analyze historical data
from teams exhibiting large variations in their rosters.



Covariate availability: many national team-level covariates could be
relevant in modelling and predicting football outcomes in Euro and
World Cups. Groll and Abedieh (2013); Groll et al. (2016, 2018a, 2021)
use for instance some economic factors such as the GDP per capita, the
population, the odds, some sportive factors, such as the average market
value, the FIFA ranking, the UEFA points, and some factors describing
the teams' structure, as the number of players abroad, the number of
Champion's League players, the difference from optimal age, the age and
the nationality of the coach. However, there is no home-effect, since in
the international tournaments there is just usually one, or two, hosting
team.

Extra time: conversely to what happens in domestic leagues, international
football matches in the knock-out stage could last more than 90 minutes.
This happens when the regular time finishes with a draw, and the two
teams are then asked to play further 30 minutes and, if the draw
equilibrium persists, deal with some penalties kicks to elect the match
winner. This occurrence makes the modelling procedure more appealing:
eventually, a proper model for the extra time could be designed.

6.2 Euro Cup 2020 and World Cup 2022

In the following sections we consider and present some “snapshots” directly
obtained from our experience of “modellers” for the Euro Cup, 2020 (but
played 2021 for Covid-19 reasons) and the World Cup 2022 hosted by
Qatar. The reason to consider the two tournaments together reflects their
similarity: after a group-stage phase, consisting of small groups, each
constituted by four teams playing one against the other only one time



according to a partial round-robin format, there are then the round of
sixteen, the quarter of finals, the semifinals and the final.

Although we provide a unique treatment, we want to make some
disclaimers. The data collection for these two tournaments could be
performed in different ways. In fact, consider that the Euro 2020 teams are
more homogeneous and similar if compared with the teams participating in
the World Cup 2022, also from a geographic perspective. Keep also in mind
that the European teams, in order to achieve the World Cup qualification, do
not compete against non-European national teams: this aspect makes the
World Cup much noisier and challenging to predict, since the eventual
match Germany-Argentina has no occurrences in the past—beyond any
eventual friendly match between the two teams.

We present here some results and, more in general, the challenges
emerged by modelling on-line the two competitions through a diagonal-
inflated bivariate Poisson model—see Equation (5.1) in Chapter 5—
designed to better capture the draw occurrences. We want to stress the fact
that the whole proposed analysis arises from some subjective choices and
may, of course, be changed/updated according to distinct modeller beliefs—
actually, we argue that this analysis could represent a nice motivation to fit
your own models and eventually improve the predictive results. We remind
the interested reader to look at the comprehensive documentation of our
modelling experience during the Euro Cup 2020 and the World Cup 20221.

6.2.1 Data

When preparing for modelling a knock-out tournament involving many
national teams, the choice of the training set is of primary relevance and
could dramatically affect the final predictions. Many and crucial questions
arise: what kind of matches should we consider? Should we weight the



matches in terms of their importance—for instance, a friendly match is less
informative and valuable than a qualifier match? And then, how many past
years should we consider?

We try to classify the major problems surrounding data collection for a
generic knock-out tournament.

_________________

 1https://statmodeling.stat.columbia.edu/2022/11/19/football-world-cup-2022-predictions-with-

stan/.

Temporal: if we consider the previous national teams' performances as a
whole, we incur in the risk of not capturing temporal trends. For instance,
consider the Italian national team: they missed the Russia World Cup
qualification on November 2017, then they had a very long consecutive
pattern of wins and draws in the years 2019-2021, and in 2021 they won
the Euro Cup against the English national team. However, they missed
again the Qatar World Cup 2022 qualification on March 2022. Thus, it is
pretty impossible to wisely use their data from 2017 to 2022 without
considering temporal trends.

Selection bias: one could arbitrarily choose to discard some games, such
as the friendly matches, since they are usually associated with less
relevant information in terms of sportive factors. However, the problem
is not avoided: are we sure to not discard some relevant, even if marginal,
information? For instance, there are some friendly matches between very
old traditional national teams—such as England, France, Germany, Italy,
among the others—that are usually played with high intensity and are
perceived to be particularly hot for both players and fans. Alternatively,
one could decide to weight the matches in terms of their importance, by
establishing a sort of ranking: tournaments, qualifiers, and friendly

https://statmodeling.stat.columbia.edu/2022/11/19/football-world-cup-2022-predictions-with-stan/


games. In such a way, some matches would be down-weighted when
fitting the models. However, it is not straightforward how to fix/estimate
the weights, and the procedure could yield a sort of selection bias.

Game importance: it is trivial to claim that a qualifier match could carry
much more information than a friendly match, where usually the coach
makes some rudimental/preliminary attempts, and the players participate
with less intensity. Anyway, it is not trivial to establish the game
importance in a clear way, possibly because some qualifiers matches
could be much more unbalanced than a friendly match between to top
teams.

Roster dynamics: national teams suffer from a long and physiological
turnover, since there are no job contracts linking national players with
their national teams. The players are usually convoked by the national
coaches on the ground of their individual performance in the respective
domestic leagues. For this reason, a national roster in 2018 could be
dramatically different from a roster of the same national team in 2020.

For these reasons, in modelling both the Euro Cup 2020 and the World
Cup 2022 we decided to adopt the following conservative strategy:

Consider all the national teams matches in the previous four years.

No game importance accounted in data collection, every match is
identically contributing to the final results.

No temporal account in the matches. Rather, we let the model, as
explained in the next section, to account for dynamic trends in the team-
specific abilities, as proposed in Chapter 4, Section 4.4.3.

No account for roster dynamics.



Here below we provide in Code Snippet 42 the data acquisition in R for
both the Euro Cup 2020 and the World Cup 2022, along with the FIFA
rankings available before the competitions started 2. A sketch of the data is
displayed in Output 38.

_________________

 2https://inside.fifa.com/fifa-world-ranking.

Code Snippet 42 Euro Cup 2020 and World Cup 2022: data acquisition. ⏎

library(footBayes)

library(devtools)

library(dplyr)

library(bayesplot)

library(ggplot2)

library(loo)

 

### EURO CUP 2020

euro_data <- read.table("euro.csv", sep=",", header = TRUE)

euro_data <- euro_data[,-1]

colnames(euro_data) <- c("periods", "home_team", 

"away_team",

                         "home_goals", "away_goals")

rankings <- read.csv("ranking_euro.csv", sep=";") # fifa 

rankings

head(euro_data)

 

### WORLD CUP 2022

wc_data_train <- read.csv("world.csv", sep=",")

https://inside.fifa.com/fifa-world-ranking


wc_data_train <- wc_data_train[,-1]

colnames(wc_data_train) <- c("periods", "home_team", 

"away_team",

                             "home_goals", "away_goals",

                             "tournament")

rankings <- read.csv("ranking_world.csv", sep=",") # fifa 

rankings

rankings <- rankings[,-1]

head(wc_data_train[,-6])

# Euro Cup

  periods        home_team away_team home_goals away_goals

1       1       Kazakhstan   Scotland         3          0

2       1 Northern Ireland    Estonia         2          0

3       1      Netherlands    Belarus         4          0

4       1         Slovakia    Hungary         2          0

5       1          Croatia Azerbaijan         2          1

6       1           Israel   Slovenia         1          1

 

# World Cup

  periods home_team             away_team home_goals 

away_goals

1       1     Belize             Barbados          1 

0

2       1 Palestine                  Iraq          0 

3

3       1    Andorra United Arab Emirates          0 



0

4       1   Barbados              Jamaica          2 

2

5       1 Bangladesh            Sri Lanka          0 

1

6       1      Macau      Solomon Islands          1 

4

Output 38: Euro 2020 and World Cup 2022 datasets' structure. ⏎

6.2.2 Tournaments scheme

The Qatar World Cup 2022 consists of:

32 national teams, 64 matches.

8 Group-stages. Group A: Netherlands, Senegal, Ecuador, Qatar. Group
B: England, United States, Iran, Wales. Group C: Argentina, Poland,
Mexico, Saudi Arabia. Group D: France, Australia, Tunisia, Denmark.
Group E: Japan, Spain, Germany, Costa Rica. Group F: Morocco,
Belgium, Croatia, Canada. Group G: Brazil, Switzerland, Cameroon,
Serbia. Group H: Portugal, South Korea, Uruguay, Ghana.

Knock-out stage: round of sixteen, quarter of finals, semifinals, finals.

The Euro Cup 2020 consists of:

24 national teams, 51 matches.

6 group-stages. Group A: Italy, Turkey, Wales, Switzerland. Group B:
Denmark, Finland, Belgium, Russia. Group C: Netherlands, Ukraine,
Austria, North Macedonia. Group D: England, Croatia, Scotland, Czech



republic. Group E: Spain, Sweden, Poland, Slovakia. Group F: Hungary,
Portugal, France, Germany.

Knock-out stage: round of sixteen, quarter of finals, semifinals, final.

In both the tournaments, the group-stage consists of a partial mini round-
robin format, where each team plays against all the others only once—of
course, there is no account for the home effect here. The group-stage
matches terminate within the regular 90 minutes (plus additional minutes
decided by the referee) with a win of the first team, a draw, or a win of the
second team. Regarding the World Cup, the first two teams for each group
rank are qualified for the knock-out phase—for a total of 16 teams—
whereas for the Euro Cup the first two teams in their final group's rank and
the best four among those who concluded at the third position are qualified
for the knock-out phase—for a total of 16 teams as well. From the knock-
out phase, a match ends within the regular time only if one of the two teams
is ahead in terms of scores/goals: in case of draw, the match is extended by
extra thirty minutes. If the draw equilibrium persists after these thirty
minutes, penalties kicks are used to select the winner.

The Euro Cup 2020 has been won by Italy, who defeated England in the
final match at the penalties kicks, while in the regular 90 minutes the match
ended 1-1. Argentina is instead the World Cup 2022 winner: they beated
France at the penalties kicks, the match after the regular time terminated 3-
3.

Keep in mind that our models in the following sections were designed to
model and predict the match results within the regular 90 minutes (plus
extra-times), perhaps we did not properly model the extra time in case of
draws and the penalties. However, we feel that the extra time after the



regular time could be further modelled: this aspect is out of the scopes of
the book and could represent a point for future research.

6.2.3 The rankings

Coca-Cola FIFA rankings3 represent one of the most well-known proxies
describing national teams' strengths. The actual FIFA algorithm is called
SUM and works by adding or subtracting some points that are partially
determined by the relative strength of the two opponents. The formula of
the SUM algorithm for determining the number of FIFA points is specified
as follows:

(6.1)

where Pointsbefore denotes the number of points before the match, I is
the match importance defined in a scale from 5 to 60 depending on the
match competition, W is the final result of the match (1 point for win, 0.5
for draw and 0 for defeat), and We is the expected result of the match,
computed as We = 1/(10−dr/600 + 1); 
dr = Pointsbefore, team A − Pointsbefore, team B. There are then some
adjustments of (6.1) for matches decided after the penalties. We invite the
interested reader to check the FIFA website for more details about the
rankings' computation.

For our purposes, the FIFA rankings represent a valuable information
worthy to be included in our models. For such a reason, we maintained to
include these rankings into the usual Poisson scoring intensities
specification by multiplying the ranking difference between the two

Points = Pointsbefore + I × (W − We),



competing teams for a coefficient accounting for its magnitude, similarly as
in (5.11).

6.2.4 The DIBP model

To better capture the tournaments' structure just described, we implement a
Bayesian diagonal-inflated bivariate-Poisson model with dynamic team-
specific offensive and defensive abilities—see Section 5.1.1 in Chapter 5
for further modelling details. Let (Yi1,Yi2) denote as usual the random
number of goals scored by the home and the away team in the i-th game, 
i = 1, … ,n, respectively. The indexes t and k denote the time instant and
the team, respectively, whereas “rank” denotes the Coca-Cola FIFA ranking
registered just before the two competitions started, at June 1st 2021 for the
Euro Cup 2020 and at October 6th, 2022 for the World Cup, respectively.
“att” and “def” denote as usual the offensive and the defensive abilities,
respectively. The whole model is then given by:

_________________

 3https://www.fifa.com/fifa-world-ranking

(Yi1,Yi2)   ∼  {

log(λi1) =  μ + atthi,t + defai,t +
γ

2
(rankinghi

− rankai)

log(λi2) =  μ + attai,t + defhi,t −
γ

2
(rankinghi

− rankai),

(1 − p)BP(yi1, yi2|λi1,λi2,λi3) if yi1 ≠ y

(1 − p)BP(yi1, yi2|λi1,λi2,λi3) + pD(yi1, η) if yi1 = y

https://www.fifa.com/fifa-world-ranking


(6.2)

Line (1) in Equation (6.2) displays the likelihood's equations for the
diagonal inflated bivariate Poisson (hereafter, DIBP) model; lines (2)–(4)
display the log-linear models for the scoring rates λi1,λi2 and for the
covariance parameter λi3: note that we assume a constant covariance
specification, see (4.17) for further details; lines (5)–(6) display the
dynamic prior distributions for the attack and the defence parameters,
respectively, as specified in (4.24)—keep in mind that two priors for the
first time instant need to be separately specified, as in (4.26), Section 4.4.3;
lines (7)–(8) display the prior distributions for the other model parameters;
line (9) displays the sum-to-zero identifiability constraints for the team-
specific abilities, as in (4.25). Model estimation has been performed
through the Hamiltonian Monte Carlo (HMC) sampling—see Section
2.5.1.3—with four chains and 2000 iterations each using the footBayes R
package introduced in Chapters 4 and 5. The historical data used to fit the
models come from all the international matches played during the previous
four years.

6.2.5 Ability estimation

log(λi3) =  ρ,

attk,t ∼  N(attk,t−1,σ2),

defk,t ∼  N(defk,t−1,σ2),

γ,  ρ,  μ ∼ N(0, 1)

p ∼ Uniform(0, 1)
nt

∑
k=1

attk,t = 0,  
K

∑
k=1

defk,t = 0,   k = 1, …K,  t = 1, … ,T .



During a Euro/World Cup competition it is plausible that the teams'
performances tend to change from the group-stage to the knock-out phase,
thus, assessing the evolution of the team-specific abilities is extremely
interesting. As broadly explained in the previous chapters, the goal-based
models strongly rely on offensive and defensive abilities which need to be
estimated according to either a static or a dynamic approach. However, it is
not trivial to report a trustful picture of these strengths during a World/Euro
cup competition: the main reason is that the use of different training sets
could dramatically change and influence these abilities; the second reason is
that we usually include a further FIFA ranking covariate to adjust the model
fit. Code Snippet 43 reports the main steps for fitting the model until the
semifinals of the Euro Cup 2020 and producing the ability estimation plots
before the semifinals took place by using the sf foot_abilities function. Note
that the argument home_effect is set to FALSE.

Code Snippet 43 Euro Cup 2020: model fit and abilities' estimation. ⏎

# 1 group-stage

ngames_prev <- 12

euro_data_test <- data.frame(periods = rep(10, ngames_prev),

  home_team = c("Italy", "Wales", "Denmark", "Russia", 

"England", "Austria",

                "Netherlands", "Scotland", "Poland",

                "Spain", "Hungary", "Germany"),

  away_team = c("Turkey", "Switzerland", "Finland", 

"Belgium", "Croatia",

               "FYR Macedonia", "Ukraine", "Czech Republic", 

"Slovakia",



                "Sweden", "Portugal", "France"),

  home_goals = c(3,1,0,0,1,3,3,0,1,0, 0,0),

  away_goals = c(0,1,1,3,0,1,2,2,2,0,3,1))

 

# 2 group-stage

euro_data_test2 <- data.frame(periods = rep(11, 

ngames_prev),

  home_team = c("Russia", "Turkey", "Italy", "Ukraine", 

"Denmark",

                "Netherlands", "Sweden", "Croatia", 

"England",

                "Hungary", "Germany", "Spain"),

  away_team = c("Finland", "Wales", "Switzerland", "FYR 

Macedonia", "Belgium",

                "Austria", "Slovakia", "Czech Republic", 

"Scotland",

                "France", "Portugal", "Poland"),

  home_goals = c(1,0,3,2,1,2,1,1,0,1,4,1),

  away_goals = c(0,2,0,1,2,0,0,1,0,1,2,1))

 

# 3 group-stage

euro_data_test3 <- data.frame(periods = rep(12, 

ngames_prev),

  home_team = c( "Italy","Switzerland", "Ukraine", 

"Netherlands",

                 "Denmark", "Finland", "Scotland","England",

                 "Sweden", "Spain", "Portugal", "Germany" ),

  away_team = c("Wales", "Turkey", "Austria", "FYR 



Macedonia",

                "Russia", "Belgium", "Croatia", "Czech 

Republic",

                "Poland","Slovakia", "France","Hungary"),

  home_goals = c(1,3,0,3,4,0,1,1,3,5,2,2),

  away_goals = c(0,1,1,0,1,2,3,0,2,0,2,2))

 

# round of 16

ngames_prev <- 8

euro_data_test_round16 <- data.frame(periods = rep(13, 

ngames_prev),

  home_team = c("Wales", "Italy", "Netherlands", "Belgium",

                "Croatia", "France", "England", "Sweden"),

  away_team = c( "Denmark", "Austria", "Czech Republic", 

"Portugal",

                 "Spain", "Switzerland", "Germany", 

"Ukraine"),

  home_goals = c(0,2,0,1,3,3,2,1), away_goals = 

c(4,1,2,0,5,3,0,2))

 

# quarter of finals

ngames_prev <- 4

euro_data_test_q <- data.frame(periods = rep(14, 

ngames_prev),

  home_team = c("Switzerland", "Belgium", "Czech Republic", 

"Ukraine"),

  away_team = c( "Spain", "Italy", "Denmark", "England"),

  home_goals = c(1,1,1,0), away_goals = c(1,2,2,4))



# seminfinals

ngames_prev <- 2

euro_data_test_semi <- data.frame(periods = rep(15, 

ngames_prev),

  home_team = c("Italy", "England"), away_team = c( "Spain", 

"Denmark" ),

  home_goals = c(1,2), away_goals = c(1,1))

euro_data <-rbind(euro_data, euro_data_test, 

euro_data_test2, euro_data_test3,

                  euro_data_test_round16, euro_data_test_q, 

euro_data_test_semi)

 

fit_semi <- stan_foot(data = euro_data, model = 

"diag_infl_biv_pois",

                      home_effect = FALSE, dynamic_type = 

"seasonal",

                      predict = ngames_prev, ranking = 

as.data.frame(rankings),

                      cores = 4)

 

foot_abilities(fit_semi, euro_data,

               teams = c("Denmark", "England", "Italy", 

"Spain"))



Long Description for Output 39

Output 39:  Euro Cup 2020: estimated 50% credible intervals (grey ribbons)
for the dynamic abilities before the semifinals of the Euro Cup 2020 took
place. The red line denotes the posterior median for the attacking ability,
whereas the blue line denotes the posterior median for the defensive
ability.⏎

We depict in Output 39 the 50% credible intervals for the estimated
attacking (red ribbons) and defensive (blue ribbons) abilities for the four
teams playing the Euro Cup 2020 semifinals, Denmark, England, Italy, and
Spain. As we may notice, the trend is similar for the four teams across the
competition: the red line for the attacking strength, the posterior median,



increases, whereas the blue line for the defence strength decreases,
suggesting how these teams are well progressing during the competition.
We remind here that the defence has to be interpreted as the defence
weakness, thus the lower is and the better is the estimated defensive
performance of the team. Denmark started poorly, by losing against Finland
1-0, but then they dramatically improved their performance, by beating
Russia 4-1 in the third match-day of the group-stage and then Wales 4-0 in
the round of sixteen. The English team's start has been not totally brilliant,
however then they won 2-0 against Germany in the round of sixteen, and
defeated Ukraine 4-0 in the quarter of finals. Italy started very well, by
beating Turkey and Switzerland 3-0, respectively, but then they stabilized,
by equalizing with Spain and England 1-1. Finally, Spain performed very
well in the central part of the competition, by scoring five goals against
Slovakia first and against Croatia then: however, they stabilized in the
quarter of finals and in semifinals, by collecting two draws against
Switzerland and Italy, respectively. We need to stress that the four teams
exhibit very similar trends; moreover, at the beginning of the tournament
the two abilities appear to be very close and approximately equal to zero for
each team: this is due to the fact that both the hyper-priors for the first
match of the group-stage are Gaussian distributions with mean equal to
zero.

6.2.6 Ahead probabilistic predictions

Using training data to obtain ahead probabilistic predictions is pretty easy
according to a Bayesian approach: we just need to sample future and
observable values from the posterior predictive distributions of the
future/held-out matches. For the sake of brevity, we can use the data until
time t to fit the model and produce the predictions for t + 1; in t + 1 we use



the data to make predictions for t + 2, and so on—we refer to Chapter 2 for
a thorough and detailed description of the sampling procedures and the out-
of-sample predictions. The computational algorithmic steps we adopted for
ahead predictions in international competitions are proposed in Algorithm
10.

Algorithm 10⏎ Ahead probabilistic predictions: international matches.

At time t:

STEP 1: use training data comprehensive of the qualifiers, friendly, and
Nation's league matches constituting the training set. If t > 0, use also
the Qatar 2022 results up to match-day t − 1

STEP 2: estimate the DIBP model (6.2) through the footBayes package
and obtain the posterior estimates for the model's parameters

STEP 3: obtain probabilistic predictions for time t + 1 from the posterior
predictive distribution, f(

~
D|D)

STEP 4: create the new training set by embedding matches up to match-
day t and set t ← t + 1 and go back to STEP 1.

Code Snippet 44 summarizes the steps for producing probabilistic
predictions for the third match-day from the group-stage of the Qatar World
Cup 2022. In Table 6.1 we provide some probabilistic predictions for the
third match-day from the group-stage of the Qatar World Cup 2022: the
third, fourth and fifth columns report the posterior predictive probabilities
for the home win, the draw, and the away win, respectively, whereas the
sixth column reports the “most likely outcome” (MLO) with the associated
probability—note that in the international competitions such as Euro and
World Cups the terms “home” and “away” do not have a proper meaning,



however we keep these definitions for consistency with the previous
chapters; the home effect here is not considered in the model. However, the
FIFA institution always establishes, just as a formal convenience, the home
and the away team for each match in the international matches. Note that
the same information contained in Table 6.1 can be graphically depicted by
the Output 40, a chessboard plot produced by the foot_prob function where
darker (lighter) regions correspond to higher (lower) probabilities, and the
red square denotes the actual final result. In this plot the first team name in
the single labels denotes the “favourite” team, whereas the second name
denotes the “underdog” team—the term “underdog” denotes the team
associated with lower winning chances; moreover, we depict the most
balanced matches to the most apparently unbalanced ones from the left top
corner to the right bottom corner—note that in these plots, unlike for what
happens in the Table 6.1, a sort of results' “truncation” occurred, since the
highest number of goals considered for both the teams is four. Thus, the
match Ecuador-Senegal (top left corner in the plot) is the most balanced
under the DIBP model—Ecuador and Senegal have both a 35% chance of
winning, and the most likely exact outcome is 0-0, with about 16% of
chance—whereas Brazil-Cameroon (bottom right corner in the plot) is the
most unbalanced, given that Brazil has a 66% winning chance against the
8% for Cameroon: the final actual results for these two matches were 1-2
and 0-1, thus in both cases the underdog team won the match. In the first
case, the result 1-2 had about the 6% probability to occur, whereas the result
0-1 for Cameroon had about the 1% chance to occur. We could note that
many MLOs in Table 6.1 are 0-0, and this is a direct implication of the
diagonal inflation of the model.

TABLE 6.1



Qatar World Cup 2022, third match-day of the group-stages: probabilistic
predictions from the posterior predictive distribution. “MLO” denotes the
most likely outcome⏎

Home team Away team
Home
win Draw

Away
win MLO

Ecuador Senegal 0.35 0.30 0.35 0-0
(0.16)

Netherlands Qatar 0.71 0.19 0.10 1-0
(0.09)

Iran United
States

0.35 0.28 0.37 0-0
(0.12)

Wales England 0.19 0.24 0.57 0-1
(0.11)

Tunisia France 0.19 0.26 0.55 0-0
(0.13)

Australia Denmark 0.30 0.29 0.41 0-0
(0.15)

Poland Argentina 0.19 0.28 0.53 0-0
(0.15)

Saudi
Arabia

Mexico 0.33 0.35 0.32 0-0
(0.23)

Croatia Belgium 0.43 0.26 0.31 0-0
(0.10)

Canada Morocco 0.20 0.28 0.52 0-0
(0.15)

Japan Spain 0.21 0.24 0.54 0-1
(0.11)



Home team Away team
Home
win Draw

Away
win MLO

Costa Rica Germany 0.21 0.27 0.52 0-0
(0.13)

South Korea Portugal 0.19 0.23 0.58 0-1
(0.11)

Ghana Uruguay 0.26 0.25 0.49 0-1
(0.11)

Serbia Switzerland 0.35 0.30 0.35 0-0
(0.16)

Cameroon Brazil 0.08 0.26 0.66 0-1
(0.19)

The same kind of representation is plotted in Output 41 for the two Qatar
2022 finals, Argentina-Francia—the final actual result within the regular 90
minutes was 3-3—and Morocco-Croatia—for which the final actual result
was 1-2—respectively, whereas the corresponding numerical results are
reported in Table 6.2. Note that the whole R code for reproducing the
results is not shown here for sake of brevity. Argentina was given a winning
chance of 41% within the 90 minutes, whereas Croatia was given a winning
chance of 27%.

TABLE 6.2
Qatar World Cup 2022, finals: probabilistic predictions from the
posterior predictive distribution. “MLO” denotes the most likely
outcome⏎

Home
team

Away
team

Home
win Draw

Away
win MLO



Home
team

Away
team

Home
win Draw

Away
win MLO

Argentina France 0.410 0.307 0.283 0-0
(0.172)

Croatia Morocco 0.272 0.335 0.393 0-0
(0.211)

Code Snippet 44 World Cup 2022: model fit and probabilistic
predictions. ⏎

# 1 group-stage

ngames_matchday1 <- 16

wc_data_train_matchday_1 <- data.frame(periods =

  rep(length(unique(wc_data_train$periods))+1, 

ngames_matchday1),

  home_team = c("Qatar", "England" , "Senegal",

                "United States", "Argentina", "Denmark",

                "Mexico", "France", "Morocco", "Germany",

                "Spain","Belgium", "Switzerland","Uruguay",

                "Portugal","Brazil"),

  away_team = c("Ecuador", "Iran", "Netherlands",

                "Wales", "Saudi Arabia", "Tunisia",

                "Poland", "Australia", "Croatia",

                "Japan", "Costa Rica","Canada",

                "Cameroon","South Korea",

                "Ghana","Serbia"),

 

  home_goals = c(0,6,0,1,1,0,0,4,0,1,7,1,1,0,3,2),



  away_goals = c(2,2,2,1,2,0,0,1,0,2,0,0,0,0,2,0),

  tournament = rep("World Cup 2022", ngames_matchday1 ))

 

# 2 group-stage

ngames_matchday2 <- 16

wc_data_train_matchday2 <- data.frame(periods =

  rep(length(unique(wc_data_train$periods))+2, 

ngames_matchday2),

  home_team = c("Wales","Qatar","Netherlands",

                "England", "Tunisia","Poland",

                "France","Argentina", "Japan","Germany",

                "Belgium","Croatia","Cameroon","Brazil",

                "Portugal","South Korea"),

  away_team = c( "Iran", "Senegal","Ecuador",

                 "United States", "Australia",

                 "Saudi Arabia",

                 "Denmark","Mexico","Costa Rica","Spain",

                 "Morocco","Canada","Serbia","Switzerland",

                 "Uruguay","Ghana"),

  home_goals = c(0,1,1,0,0,2,2,2,0,1,0,4,3,1,2,2),

  away_goals = c(2,3,1,0,1,0,1,0,1,1,2,1,3,0,0,3),

  tournament = rep("World Cup 2022",ngames_matchday2))

 

# 3 group-stage

ngames_matchday3 <- 16

wc_data_train_matchday3 <- data.frame( periods =

  rep(length(unique(wc_data_train$periods))+3, 

ngames_matchday3),



  home_team = c("Ecuador", "Netherlands", "Iran", "Wales",

                "Tunisia", "Australia", "Poland", "Saudi 

Arabia",

                "Croatia", "Canada", "Japan", "Costa Rica",

                "South Korea", "Ghana", 

"Serbia","Cameroon"),

  away_team = c( "Senegal", "Qatar", "United States", 

"England",

                 "France", "Denmark", "Argentina", "Mexico",

                 "Belgium", "Morocco", "Spain", "Germany",

                 "Portugal", "Uruguay", "Switzerland", 

"Brazil"),

  home_goals = c(1,2,0,0,1,1,0,1,0,1,2,2,2,0,2,1),

  away_goals = c(2,0,1,3,0,0,2,2,0,2,1,4,1,2,3,0),

  tournament = rep("World Cup 2022", ngames_matchday3))

wc_data_stan <-rbind(wc_data_train, 

wc_data_train_matchday_1,

                     wc_data_train_matchday2, 

wc_data_train_matchday3)

 

fit_group3 <- stan_foot(wc_data_stan[,-6], model = 

"diag_infl_biv_pois",

                        home_effect = FALSE, dynamic_type = 

"seasonal",

                        predict = ngames_matchday3,

                        ranking = as.data.frame(rankings), 

cores = 4)

foot_prob(data = wc_data_stan[,-6], object = fit_group3)



Algorithm 11 Winning probabilistic predictions ⏎

At time t:

Step 1: use training data comprehensive of the qualifiers, friendly, and
Nation's league matches constituting the training set. If t > 0, use also
the tournament results up to match-day t − 1

Step 2: estimate the DIBP model (6.2) through the footBayes package and
obtain the posterior estimates for the model's parameters

Step 3: construct M predictive scenarios for the upcoming tournament
phases from the posterior predictive distribution, and count how many
times a given team wins the final tournament, using 
qk = #{team k wins}/M  as its estimated winning probability.



Long Description for Output 40

Output 40:  Qatar World Cup 2022, third match-day of the group-stages:
probabilistic predictions from the posterior predictive distribution. The first
team listed in each sub-title is the “favourite” (x-axis), whereas the second
team is the “underdog” (y-axis). The 2-way grid displays the 16 held-out
matches in such a way that closer matches appear at the top-left of the grid,
whereas more unbalanced matches (“blowouts”) appear at the bottom-right.
The matches are then ordered from top-left to bottom-right in terms of
increasing winning probability for the favourite teams. Darker regions
correspond to more likely results, whereas red squares denote the actual
observed results.⏎



Long Description for Output 41

Output 41:  Qatar World Cup 2022, finals: probabilistic predictions from the
posterior predictive distribution. “favourite” and “underdog” denote the
favourite and the underdog team, respectively. The first team listed in each
sub-title is the “favourite” (x-axis), whereas the second team is the



“underdog” (y-axis). Darker regions correspond to more likely results,
whereas red squares denote the actual observed results.

6.2.7 Winning probabilities

One of the most intriguing tasks sports data scientists are asked during a
knock-out tournament is to estimate the final winning probabilities as the
tournament evolves. We should notice that obtaining this kind of
predictions is slightly more complicated than predicting at time t the results
for the match-day t + 1: in fact, we need to generate some future scenarios
and draw the knock-out stage from the current stage until the end of the
tournament: then, we just need to count how many times the team k wins
the tournament across the distinct scenarios. As one can notice, this can be
computationally expensive, as shown and explained in Algorithm 11.

Once the tournament has reached the semifinals, we estimated the
winning probabilities for the Euro Cup 2020 and the World Cup 2022 in
Table 6.3: as it may be noted, the two winner teams, Italy and Argentina,
got the highest winning chances before the semifinals took place, 34% and
45%, respectively. Although this is not to be taken as a sort of “gold
oracle”, we strongly believe that our simple DIBP model can capture well
some dynamics underlying the knock-out tournament evolution. We may in
fact also appreciate that for both the tournaments the final actual ranking—
Italy and England for Euro 2020, for which there is not the third-place final;
Argentina, France, Croatia and Morocco for the World Cup—exactly
mirrors the probabilistic ranking implied by the model's winning
probabilities reported in the third column in the table.

TABLE 6.3



Euro Cup 2020 and World Cup 2022 estimated winning
probabilities before the semifinals took place⏎

Team Winning % Observed rank

Euro Cup 2020

Italy 34 1
England 30 2
Spain 22 not assigned
Denmark 14 not assigned

World Cup 2022

Argentina 45 1
France 35 2
Croatia 12 3
Morocco 8 4

6.2.8 Expected goals

Nowadays expected goals (Rathke, 2017)—xG, hereafter—represent an
intriguing measure that seeks to account for the offensive potential
produced by a team in a given game or the potential scoring chances of a
single player. The number of xG translates the goals that one team or player
would have expected to score. In order to quantify the xG in a given match,
we would need to construct suitable algorithms/models and use some
influential covariates/features, such as the distance to goal, the angle of
shot, the body part, etc.

Although xG represent nowadays a very hot topic in sport newspapers
and specialized magazines, we need to note that to construct suitable xG
models one would need rich, granular, and sophisticated data, which are
usually far to be accessible to a large audience: among them, one could
consider the location of every single match shot; how the ball was delivered
to the person making the shot; whether the shot was made by foot or by



header, and so on. However, this kind of modelling procedure goes beyond
the scopes of this book. Moreover, there is not a gold-standard
scientific/statistical modelling protocol for xG yet, and this makes these
measures quite subjective and, at least now, hardly reproducible.

During the two knock-out tournaments we decided to report a measure of
xG simply based on a point estimate of the estimated parameters from the
DIBP model (6.2), by computing the xG for team A and team B
respectively as:

(6.3)

where âtt and d̂ef denote the posterior medians for the attacking and the
defensive parameters, respectively. Table 6.4 reports the xG—third and
fourth column—computed for the two semifinals of the Euro Cup 2020,
Italy against Spain and England against Denmark, respectively. The table
also reports the actual observed goals—fifth and sixth column. We could
notice that both the matches were predicted to be very tight in terms of the
final number of expected scores within the regular times, and the global
predicted balance was mirrored by the observed results.

TABLE 6.4
Euro Cup 2020 semifinals: xG computed from
the DIBP model against the number of actually
observed scores⏎

xGA = exp{âttA + d̂efB +
γ̂

2
( rankingA − rankB)}

xGB = exp{âttB + d̂efA −
γ̂

2
(rankingA − rankB)},



favourite underdog xGf xGu y1 y2favourite underdog xGf xGu y1 y2

Italy Spain 1.36 0.85 1 1
England Denmark 1.41 0.81 2 1

6.2.9 What happened, what we predicted

The task of predicting a knock-out tournament is not trivial and we should
be always aware of the “risks” accompanying this action. In fact, better
teams are usually quite favourite against weaker teams, nonetheless some
“underdogs” are sometimes able to overturn the forecast. For instance,
consider the match Argentina-Saudi Arabia, played during the first match-
day of the Qatar World Cup 2022 group-stage, group C. According to the
majority of the bookmakers, the chance of win for Saudi Arabia did not
exceed 4-5%, however our DIBP model assigned to Saudi Arabia a winning
chance approximately equal to 6%. Argentina immediately scored with Leo
Messi, however Saudi Arabia overturned the result in the second half and
defeated Argentina 2-1, by getting a very surprising result. As another
example of an underdog beating the favourite, we could also consider the
match Germany-Japan, group-stage E, where Japan defeated Germany 2-1
in the last minutes of the match.

Although the football matches, in particular those arising in the knock-
out tournaments, are difficult to be forecasted, we strongly maintain that our
model has been able to provide satisfactory predictive results. If we look at
the global pseudo-R2 for the probabilities of the process win/draw/loss this
is equal to 0.356 for the Qatar World Cup 2022 and 0.377 for the Euro
2020, whereas the Average of Correct Probabilities (ACP) in (3.14) in
Section 3.4.5 is equal to 0.41 for the Qatar World Cup 2022 and 0.424 for
the Euro 2020. We stress the fact that a “random” classifier would obtain



1/3 in terms of both the metrics: the results above clearly show that
adopting a statistical model in place of a random classifier has some
relevant advantages.

Moreover, another predictive confirmatory tool for our model comes
from the winning probabilities reported in Table 6.3: for both the knock-out
tournaments we have been somehow able to predict in advance the
favourite final winner and, in general, the final rankings implied by the
model's probabilities.

As a final predictive tool, the users could compute some of the model's
predictive measures reported in Chapter 3, Section 3.4, such as the Brier
score, the ACP, and the pseudo-R2, by using the compare_foot function of
the footBayes package, as reported in Code Snippet 45 and Output 42—
here just for the third match-day of the group-stage used as held-out data.

Code Snippet 45 World Cup 2022: predictive performance of the DIBP
model. ⏎

compare_foot(fit_group3, test_data = 

wc_data_train_matchday3)

Predictive Performance Metrics

 Model   RPS accuracy brier pseudoR2   ACP

   fit 0.278    0.500 0.644    0.332 0.393

Output 42: World Cup 2022: predictive performances of the DIBP
model. ⏎



6.3 Comparison with odds forecasters

It is not easy to compare in detail the predictive performance of our model
in the two knock-out tournaments with those provided by the bookmarkers.
There are many reasons for this lack of comparisons. First of all, there is a
debate about which betting odds should be more representative for a given
match: as far as we know, the bookies adjust their odds before and during
the match itself, then they provide a sort of dynamic odds trend, and for
such a reason it is not clear at all when considering the most plausible set of
odds. Moreover, they usually adjust the odds on the ground of the bettors'
market, and it is implicit that, especially a few hours before the match
begins, some adjustments occur only due to economic factors and bettors'
fluctuations.

As far as we know there is not even a public historical repository for the
odds provided by the bookies for international matches, which makes the
process of comparison quite hard. For both the knock-out tournaments, we
considered the betting odds provided one hour before the matches from
some Italian and European bookmakers: in the majority of the cases, the
Brier score (3.9) in Section 3.4.3 and the pseudo-R2 (3.15) in Section 3.4.6
values obtained from the DIBP model were globally better than those
obtained from the bookmakers' odds.

Finally, even if a whole and thorough comparison with bookmakers and
odds forecasters goes out from the purposes of this book, we claim that our
model has been so far able to produce overall good predictive performances
for the Euro Cup 2020 and the World Cup 2022. In Chapter 7 we provide a
whole betting simulation to compare the probabilistic performances given
by our models and the bookmarkers.



6.4 Future research

As previously remarked, the main purpose of this chapter is to give the
reader an overview of our modelling and predictive experience during the
last Euro and World Cups. We strongly feel that many of these analyses
could be enriched, updated, if not improved, and for these reasons we invite
the interested reader to try on their own to do better, by using the
reproducible R code and the data accompanying this book.

Thus, we conclude this modelling journey by collecting some further
points left for future research and interest:

weight the training set matches according to their importance;

evaluate the inclusions of other types of rankings and other covariates at
team-level and match-level;

include some information about the rosters/players' participation;

train distinct models and possibly obtain some predictions through
Bayesian model averaging techniques;

update the final winning probabilities as long as the tournament evolves;

produce online predictions as the matches evolve.



6.5 Summary and closing remarks of Chapter 6

In this chapter we provided a thorough and detailed overview of our
modelling experience for two of the recent most important football
international tournaments, the Euro Cup 2020—actually played in 2021 due
to the Covid-19 outbreak—-and the World Cup 2022 hosted by Qatar by
using the footBayes package.

Some modelling strategies for these kinds of tournaments have been
proposed in the previous chapters, however we provide in Section 6.2.1 a
deep focus on data acquisition and some choices left to the user choice. The
two competitions exhibit a similar structure, as explained in Section 6.2.2,
with a partial round-robin scheme followed by a knock-out phase. The
inclusion of the FIFA rankings is proposed in Section 6.2.3, whereas the
diagonal-inflated bivariate Poisson model chosen for the analysis is
thoroughly presented in Section 6.2.4. The team-specific abilities are
plotted and described in Section 6.2.5, whereas out-of-sample predictions
represent the focus of Sections 6.2.6 and 6.2.7 in terms of ahead predictions
and winning probabilities. A naive use of the so-called expected goals, or
xG, is the focus of Section 6.2.8, whereas a final analysis of predictive
accuracy is given in Section 6.2.9. Section 6.3 quickly focuses on a
comparison with the bookmakers, whereas some points of improvement and
future research are provided in Section 6.4.



7
Compare statistical models'
performance with the bookmakers

DOI: 10.1201/9781003186496-7

7.1 How odds relate to probabilities

As widely known, there is a strong connection existing between betting
odds and probabilities, broadly investigated over the last decades. However,
there is often a general lack of awareness in the odds' interpretation and in
their final derivation. To begin with some intuitive arguments, the odd of a
given event, say 2.5, is usually specified as the amount of money we would
win if we bet one unit on that event: thus, if we bet 1 Euro on the event E
and then the event E is actually observed, we obtain a cash-flow of 2.5
Euro. To get a realistic measure of the likelihood of a given event in terms
of the bookmakers' evaluation, we can compute the inverse odd, usually
denoted with 1:2.5: however, the latter is a non-coherent probability
associated to that event. In fact, summing the betting odds associated to the
sequence of possible occurrences for a given event—-as the home win, the
draw, and the away win for a football match— does not yield 1, rather the
sum of the inverse odds is greater than one (Dixon and Coles, 1997) to
allow the bookmakers to make their profit, or margin. We will provide some
examples in the remainder of the chapter.

https://doi.org/10.1201/9781003186496-7


We start by introducing some convenient notation for the rest of the
chapter. We denote with:

the vector of the inverse betting odds oi, the vector of the estimated betting
probabilities from the bookmaker(s) πi, the vector of estimated
probabilities under the model pi, and the set of the three-way results Δi for
the i-th game, respectively.

Even though they cannot be directly used as probabilistic objects, there is
some empirical evidence that the betting odds are the most accurate
available source of probability forecasts in many sports (Štrumbelj, 2014);
in other words, predictions based on odds-probabilities have been shown to
be better, or at least as good as, statistical models which use sport-specific
predictors and/or expert tipsters.

However, the betting odds could be easily transformed into coherent
probabilities through some simple mathematical manipulation. There is a
strong debate over which method to use for inferring a set of probabilities
from the raw betting odds, the two main procedures proposed in the
literature are: the basic normalization, which consists in dividing the
inverse odds by the booksum, i.e. the sum of the inverse betting odds, as
broadly explained in Štrumbelj (2014); and the Shin's procedure described
in Shin (1991, 1993). Štrumbelj (2014), Cain et al. (2002, 2003), and Smith
et al. (2009) show that Shin's probabilities improve on the basic
normalization: in Štrumbelj (2014) this result has been achieved by the

oi =  {oHome
i , oDraw

i , o
Away
i },   i = 1, … , n

πi =  (πHome
i , πDraw

i , π
Away
i ),  i = 1, … , n

pi =  (pHome
i , pDraw

i , p
Away
i ),  i = 1, … , n

Δi =  {‵‵Home win’’,‵‵Draw’’,‵‵Away win’’},  i = 1, … , n,



application of the Ranked Probability Score (RPS) (Epstein, 1969) and the
Brier score (Brier et al., 1950), two well-known discrepancy measures
between the probability of a three-way process outcome and the actual
outcome, as explained in Sections 3.4.3 and 3.4.4 in Chapter 3. We give
here a brief overview of the two transformation methods.

7.1.1 Basic normalization

As explained by Dixon and Coles (1997), one could easily infer a vector of
probabilities from the original betting odds just by using the following
normalization rule:

(7.1)

where β = ∑j o
j
i  is the so called booksum (Štrumbelj, 2014). The method

has gained a great popularity due to its simplicity and is usually adopted as
a benchmark for probabilistic forecasts derived from the bookmakers odds.

7.1.2 Shin's procedure

In the model proposed by Shin (1993), the financial market is populated by
the market makers and the traders. In the specific setting where the market
is the market for bets, the bookmakers are the marked makers who specify
their odds with the aim to maximise their expected profit, whereas the
traders are represented by the uninformed bettors. However, the novelty
introduced by Shin is to augment this market by considering a third actor,

π
j
i =

o
j
i

β
,  i = 1, … , n,  j ∈ Δi,



generically represented by the insider traders. An insider trader is a
particular actor who, due to his/her superior information, is assumed to
already know or partially know the outcome of a given event—e.g. a
football match, a horse race, etc.—before that specific event takes place.
Their contribution in the global betting volume is quantified by the
percentage z. Assume that the bookmaker has probabilistic beliefs
expressed by πi for the event i, the total expected profit for the bookmaker
in the match i is then given by:

(7.2)

where we suppressed the upper index i for easing the notation, and Δi

contains all the possible event's occurrences. The bookmaker sets the vector
of inverse odds o in order to maximize the expected profit, subject to the
constraints: 0 ≤ oj ≤ 1, for each occurrence j.

Jullien et al. (1994) explicitly derived a closed-form expression for the
betting probabilities πj, depending on z, derived from the inverse betting
odds oj under the Shin's approach as:

(7.3)

G(π) = 1 − ∑
j∈Δi

πjoj(πj(1 − z) + z),

πj(z) =
√z2 + 4(1 − z)(oj)2/β − z

2(1 − z)
,  j ∈ Δi,



referred in the literature as Shin's probabilities. Equation (7.3) is a function
depending on the insider trading rate z: in order to estimate it, Jullien et al.
(1994) suggest to use non-linear least squares as:

which gives the closed-form solution obtained by Štrumbelj (2014)

(7.4)

by using fixed-point iteration. Note that as the booksum
approaches 1, the proportion of insider traders z goes to 0, reducing

Shin's approach to basic normalization. ẑ may be defined as the minimum
rate of insider traders that yields those probabilities corresponding to the
vector of inverse betting odds o.

As it is usually remarked, for instance in Egidi et al. (2018b) and in
Figure 7.1 for the English Premier League from 2007 to 2017, the draw
probabilities obtained under the basic normalization tend to be slightly
higher than those obtained under Shin's procedure: in such a sense, basic
normalization implements a uniform adjustment of the three probabilities,
whereas the Shin's procedure addresses the transformation by assuming a
non-uniform approach. Shin (1993) and Štrumbelj (2014) remark that the
Shin's normalization improves on basic normalization; however, there are

ẑ = arg min
z

[∑
j∈Δi

πj(z) − 1]
2

,

z = ∑
j∈Δi

√z2 + 4(1 − z)(oj)2/β − 2,



not mathematical proofs about the supposed supremacy of one method over
another, rather the assessment should be performed via some measures and
indicators of probabilistic forecasting such as the Ranked Probability score
(Epstein, 1969), or the Brier score described in Section 3.4.3 in Chapter 3.
We stress that a thorough and detailed motivation behind the Shin's
probabilities formulation goes beyond the purposes of this chapter and the
whole book in general. We are rather interested on a broad overview about
probabilistic forecasts derived from the bookmakers. We refer the interested
reader to the work of Shin (1991, 1993).

Long Description for Figure 7.1

FIGURE 7.1
From Egidi et al. (2018b): comparison between home win (a), draw (b) and
away win (c) Shin probabilities (x-axis) and the basic normalized
probabilities (y-axis) for the English Premier League Seasons from 2007–
2008 to 2016–2017, according to seven different bookmakers. For each
three-way outcome, ρ is the Pearson's correlation coefficient and lOR a
global log-odds ratio between basic and Shin probabilities over all the
matches and all the different bookmakers.⏎

7.1.3 Regression analysis



An alternative way to derive probabilities from betting odds is to use a
regression analysis approach to predict the outcome probabilities from a set
of bookmakers' odds. As remarked by Štrumbelj (2014), this approach
requires a historical set of betting odds and match outcomes, which can be
used to estimate the parameters of the model. For sports with three
outcomes, as in football, an ordered logistic regression model is used by
Train (2009) in their Chapter 7, whereas for two outcomes a logistic/probit
regression can be safely adopted (Train, 2009, Chapter 3).

7.2 The bookmaker market: Expected profit, fairness, and
margin

As it is widely known and stressed in the previous section, inverse betting
odds do not correspond to coherent probabilities, unless some
transformations and normalizations as those introduced in the previous
sections are applied. This is due to the fact that the bookmakers inflate their
odds by allowing for a gain margin: as a consequence, when buying a given
event at a given price, the bet will be always not favourable from the
bettor's perspective. As explained by Shin (1993), if the prices were
proportional to true probabilities, the winnings ratio would be constant over
all the subjects. However, the odds are biased in such a way that contingent
claims on the favourites are cheaper (relative to true probabilities) than the
claims on the longshots. This is the so-called favourite-longshot bias.

In what follows, we mathematically describe the bookmaker and the
bettor positions, respectively, by assuming different scenarios for the
underlying betting market where they act. To better understand how the two
distinct actors—bookmakers and bettors—achieve their respective aims, we
will need to think in terms of expected profits (de Finetti, 1931; De Finetti,



1970). Perhaps, in the next sections we analyze and introduce the concepts
of profit and expected profit for both the market's actors, the bettor and the
bookmaker, respectively. In doing this, we will assume some comfortable
operational assumptions, such as considering an artificial market populated
only by one bettor. However, one could use the simple mathematics therein
introduced to make these situations less artificial, and, for instance, study
and infer some more complicated behaviours of the betting companies with
regard to a population of bettors. This and other purposes, despite very
interesting, go out from the scopes of this book.

7.2.1 Market with one bookmaker and one event

As a starting point, consider a betting market populated by only one
bookmaker and one bettor, for simplicity. The bookmaker holds an event E
associated with a true probability p to occur, and quote it as 1/o, where o
represents the inverse odd. Taking the bettor's perspective, he could
consider to bet an amount S on the event E, quoted as 1:1/o, either winning
then the amount W = S/o if the event E occurs, with probability p, or lose
S if the event E does not occur, with probability 1 − p. We denote the
bettor's profit with Gbe, and the binary event realization with the couple 
(E, Ē). The event profit for the bettor is then represented by:

(7.5)

whereas from the bookmaker's viewpoint the profit Gbo is given by the
opposite situation:

Gbe(E) =  (W − S) × p

Gbe(Ē) =   − S × (1 − p),



(7.6)

We compute now the expected profit for the event E, by taking both the
positions:

(7.7)

We easily realize how the expected profit for the two positions strictly
depends on the invested amount S and the probability-odds ratio p/o: if the
probability of E is higher than the bookmaker inverse odd—we remind, the
inverse odd is a non-coherent probability evaluation—being then p/o > 1,
the bettor yields a positive expected profit; conversely, the bookmaker
yields a positive expected profit if and only if p/o < 1. In rough words, the
bettor should invest the money on the event E if and only if the probability
of E exceeds the bookmakers' inverse odd for E. However, in a horse race
or in a football match, the difficulty of obtaining favourable expected
profits for the bettors is due to the ignorance about the true occurrence
probabilities for the events of interest.

At this step the arguments in favour of an eventual positive expected
return invite us to consider the notion of equity, or fairness, introduced by
the Italian mathematician Bruno de Finetti in De Finetti (1970): the bet

Gbo(E) =  (S − W) × p

Gbo(Ē) =  S × (1 − p).

E(Gbe) =  (W − S) × p − S × (1 − p) = Wp − S = S ( p

o
− 1)

E(Gbo) =  (S − W) × p + S × (1 − p) = S − Wp = S (1 −
p

o
).



above is fair if and only if the expected profit is zero for both the positions,
meaning that the bet will not give any advantage to either the bettor or the
bookmaker. Mathematically speaking, this means:

(7.8)

which means that in order for a bet to be fair the inverse odd of the
bookmaker must coincide with the true probability of occurrence p for the
event E: in other words, the odds formulated by the bookmaker should
exactly mirror then the true event probability.

The bet is instead unfair if the expected profit is in favour either of the
bookmaker or the bettor, and this applies whenever E(G) ≠ 0. For instance,
a positive expected profit for the bettor implies E(Gbe) > 0 ⇔ S/o > S/p,
then o < p: it is then immediate to notice that managing the inverse odd o
affects the fairness of the bet. Suppose in fact we could assume a new
inverse odd o′, with o′ > p: this implies a winning amount 
W ′ = S/o′ < S/p = W , meaning that E(Gbo) > 0, in such a way the bet
would be always favouring the bookmaker. Then, increasing/decreasing the
inverse odd makes the bet unfair, favouring the bettor or the bookmaker: in
general, all the odds in the market are biased in favour of the bookmakers,
and this represents the favourite-longshot bias for the betting companies.

E(Gbe) =  E(Gbo) = 0 ⇔

Wp − S =  S − Wp = 0 ⇔

W =  
S

p
⇔

S/o =  S/p ⇔

o =  p,



7.2.2 Market with one bookmaker and more events

We can generalize the setting above, by using a collection of mutually
exclusive events E1, E2, … , Ek, such that 
Pr(∪k

i=1Ei) = ∑k
i=1 Pr(Ei) = 1, and Ei ∩ Ej = ∅, when i ≠ j. A typical

example could be given by a horse race where each Ei represents the event:
“the horse i wins the race”. We further assume that each event is associated
with some “true” occurrence probabilities p1, p2, … , pk, whereas the
inverse odds provided by the bookmaker operating in the market are given
by o1, o2, … , ok. Moreover, we assume that the bettor pays the prices 
S1, S2, … , Sk to win one among the amounts 
W1 = S1/o1, W2 = S2/o2, … , Wk = Sk/ok in case one of the mutual
events takes place. See Table 7.1 for a detailed illustration of the bettor and
bookmaker positions. From the bettor's perspective, the profit for the couple
(Ei, Ēi) takes places is:

TABLE 7.1
Market with one bookmaker and k mutually exclusive events⏎

event true
p

inv.
odds

prices E(Gbe) E(Gbo)

E1 p1 o1 −S1 S1
p1

o1
−∑i Si ∑i Si − S1

p1

o1

E2 p2 o2 −S2 S2
p2

o2
−∑i Si ∑i Si − S2

p2

o2

… … … … … …
Ei pi oi −Si Si

pi

oi
−∑i Si ∑i Si − Si

pi

oi

… … … … … …
Ek pk ok −Sk Sk

pk

ok
−∑i Si ∑i Si − Sk

pk

ok



(7.9)

whereas symmetrically the profit for the bookmaker is:

(7.10)

From the equations above, we may then define the expected profits for the
two actors with some simple algebraic manipulations:

Similarly as what happens for the one-event market presented in Section
7.2.1, it is immediate to conclude that the betting system above is fair if and

Gbe(Ei) =  (Wi −
k

∑
i=1

Si) × pi

Gbe(Ēi) =   − (1 − pi) ×
k

∑
i=1

Si,

Gbo(Ei) =  (
k

∑
i=1

Si − Wi) × pi

Gbo(Ēi) =  (1 − pi) ×
k

∑
i=1

Si.

E(Gbe) =
k

∑
i=1

[ Si
pi

oi

−∑
i

Si]

E(Gbo) =  
k

∑
i=1

[∑
i

Si − Si
pi

oi

].



only if E(Gbe) = E(Gbo) = 0 ⇔ pi = oi, for any i = 1, … , k. Conversely,
if oi > pi, or pi/oi < 1, meaning that the inverse odd set by the bookmaker
for the event Ei is greater than the corresponding event probability, then we
have a positive expected profit for the bookmaker, E(Gbo) > 0, and a
negative expected profit for the bettor, E(Gbe) < 0. Consider that in this
artificial framework we are somehow assuming some true occurrence
probabilities for the events of interest: however, in the majority of the
applications, as in football, these are not accessible! Of course, the more
precise they are estimated, and the more valuable will be the probabilistic
evaluation.

Also from this market scenario we can conclude that the bookmaker can
arbitrarily set and manage the inverse odds of a collection of mutually
exclusive events in order to take favour, and then make money, against the
bettor(s).

7.2.3 Market with more bookmakers and more events

Assume now that B bookmaker companies hold k mutually exclusive events
E1, E2, … . Ek, and denote with ob

1, ob
2, … , ob

k the inverse odds vector for
the b-th bookmaker, with b = 1, 2, … , B. Suppose again for simplicity that
the bettor pays the prices S1, S2, … , Sk to win one among the amounts 
W b

1 = S1/ob
1, W b

2 = S2/ob
2, … , W b

k = Sk/ob
k in case one of the mutual

events takes place: as a matter of convenience, we then assume that the
bettor invests the same amounts S1, S2, … , Sk for each of the B
bookmakers. We can then compute the bettor's profit as:



(7.11)

whereas the bettor's expected profit is given by:

(7.12)

For simplicity we focus on the single bookmaker: analogously as in Section
7.2.2, the market is fair, meaning E(Gbe) = 0, if and only if pi = ob

i  for any
i = 1, … , k. If pi/ob

i < 1, then the bettor will have a negative expected
profit when competing against the b-th bookmaker—however, in this
market situation some compensations between the bookmakers' odds could
occur. The symmetrical position for the distinct bookmakers, not reported
here, can be easily derived as in the previous sections. As a final comment,
we point out that the odds and then the inverse odds vary across the
bookmakers—this happens in many sports, such as football, tennis, etc.:
this practically means that a bettor could diversify the distinct bet amounts
by looking for some “arbitrage” windows. For more details about the

Gbe(Ei) =  
B

∑
b=1

(Si/ob
i −

k

∑
i=1

Si) × pi

Gbe(Ēi) =   − B(1 − pi) ×
k

∑
i=1

Si,

E(Gbe) =  
B

∑
b=1

k

∑
i=1

[(Si/ob
i −

k

∑
i=1

Si) × pi − (1 − pi) ×
k

∑
i=1

Si]

=  
B

∑
b=1

k

∑
i=1

[Si

pi

ob
i

−
k

∑
i=1

Si].



concept of arbitrage in financial markets, we refer the reader for instance to
Dybvig and Ross (1989).

7.2.4 Bookmaker's gain in football

As shown above, the bookmakers inflate their probabilities by loading a
margin ensuring a positive expected return. As an illustrative football
example, suppose we want to place a bet on the English Premier League
match Arsenal vs Manchester United, by putting 3 euros on one among the
events: Arsenal win, draw, United win. The betting odds for the three events
provided by an imaginary bookmaker are respectively: 2.5, 3, 3.2, which
means that our eventual cash-flow is equal to 7.5, 9, or 9.6. If we take the
inverse of the odds, 1/2.5, 1/3, 1/3.2, we realize that their sum exceeds one,
being 1.046: this means that the bookmaker margin is equal to 4.6%, and
this loading always makes the bet unfair for us, the bettor, and favourable to
the bookies. The expected profit for the bettor is in fact:

which means that the bettor who assume the inverse odds as being “true”
probabilities incurs in a probable loss, whereas the bookmaker,
symmetrically, earns a probable gain. Suppose now to transform the inverse
odds into coherent probabilities through the basic normalization procedure
proposed in Section 7.1, which gives the following probabilities' vector for
the match: π = (0.382, 0.319, 0.299) for the Arsenal win, the draw, and the
United win, respectively. If we adopt these probabilities for evaluating the

(7.5 − 3) × 0.4 − 3 × 0.646 = − 0.135  bet on home win

(9 − 3) × 0.333 − 3 × 0.7125 = − 0.1395  bet on draw

(9.6 − 3) × 0.3125 − 3 × 0.733 = − 0.1365   bet on away win,



outcomes corresponding to the Arsenal win, the draw, and the United win,
the expected profit for the bettor will be:

Thus, according to the betting implied probabilities above, the expected
profit is still always negative for the bettor, and, conversely, positive for the
bookmaker: in fact, to consider the bookmaker's perspective it is just
sufficient to take the symmetrical position and simply change the sign of the
bet above. However, it is again worth noting that in frameworks such as
football no one know the true probabilities.

7.3 Strategies on betting in football

7.3.1 Dixon and Coles approach

Once the vector of betting probabilities π has been obtained with one
among the methods described in Section 7.1—either with basic
normalization, Shin procedure, or regression analysis—we should try to
assess how and when it is convenient to bet on some events using the model
probabilities. The rationale behind betting is that if our model reflects
approximately well the real chances of occurrence of a given event, then
these probabilities should be used to challenge the bookmakers and
eventually beat them: we have already seen in the previous sections that
whenever oi > pi for some binary events, then the bookmaker obtains a

(7.5 − 3) × 0.382 − 3 × 0.618 = − 0.135  bet on home win

(9 − 3) × 0.319 − 3 × 0.681 = − 0.129  bet on draw

(9.6 − 3) × 0.299 − 3 × 0.701 = − 0.13   bet on away win.



positive expected profit. Regarding football and the three-way outcomes,
Dixon and Coles (1997) suggested to fix a margin tolerance δ, such that one
would bet on a match/event i if and only if:

where pj
i , π

j
i  denote the probabilities for event i and occurrence j under the

model and the bookmaker, respectively—we assume here to deal with a
unique bookmaker, for simplicity Actually neither pj

i  nor πj
i  correspond to

the true probabilities for match i, which are usually unknown in football and
in general in sports; however, we could obtain a positive return if our
estimated probabilities are sufficiently more accurate than those derived
from the bookmakers, meaning their ratio exceeds a fixed tolerance δ. If the
model probabilities pi are accurate, then the expected gain from a unit bet
for match i and outcome j is given by

(7.13)

As remarked by Dixon and Coles (1997), the choice of δ strongly
depends on the amount of risk aversion undertaken by the bettor. They even
propose to estimate δ or, alternatively, to monitor the return by varying the
values of δ through a sensitivity analysis. If we increase δ, this means we
adopt a stricter betting regime, but with fewer bets. Thus, the amount of δ
strictly depends on the risk aversion of the single bettors: we give a
practical example on the choice of δ in the case-study reported in Section
7.4.

p
j
i/π

j
i > δ,   j ∈ Δi,

E(Gbe) = p
j
i/π

j
i − 1.



7.3.2 Highest expected return

In a betting football strategy, two main questions arise: it is worth betting
on a given match? If so, how much of the available resources should be
invested for betting? In Section 7.1, we described two different procedures
for inferring a vector of betting probabilities π from the inverse odds vector
o. The common expression “beating the bookmakers” may be interpreted in
two distinct ways, from a probabilistic and a profitable point of view.
According to the first definition, which is more appealing for statisticians,
the πj

i  denote the betting probabilities provided by the bookmaker for the i-
th game, with j ∈ Δi = {‵‵Home win”,‵‵Draw”,‵‵Away win” }.
Additionally, let Yi1 and Yi2 denote the random variables representing the
number of goals scored by two teams in the i-th match. If we adopt a
Bayesian Poisson-based model among those introduced in Chapter 5, we
can easily compute the following three-way model's posterior probabilities:

for each match i, conditioned on the past outcomes D , by using the samples
from the posterior predictive distribution. To assess whether we can
probabilistically beat the bookmakers, we definitely need some probabilistic
measures of performance, as those introduced in Chapter 3, such as the
Brier score or the pseudo-R2.

According to the second definition, “beating the bookmaker” means
earning money by betting according to our model probabilities. One could
bet one unit on the three-way match outcome with the highest expected

pHome
i = P(Yi1 > Yi2|D),

pDraw
i = P(Yi1 = Yi2|D),

p
Away
i = P(Yi1 < Yi2|D),



return (Egidi et al., 2018b). Denoted with ji and Si the three-way outcome
with the highest expected gain (7.13) and the money invested in the i-th
match, respectively, the expected bettor profit is then defined, similarly as
in (7.7), as:

(7.14)

where we again suppressed the bookmakers' index to ease the notation: it is
evident how the expected profit is positive as long as p

ji

i /o
ji

i > 1, as
remarked in Sections 7.2.1–7.2.3. Then, we extended a binary event
scenario to a three-way event scenario.

7.3.3 Kelly approach

One of the fundamental steps for devising a good betting strategy is to
establish the portion of available funds that the bettor is willing to invest on
a sequence of events. The Kelly approach (Kelly, 1956) is a probabilistic
strategy that determines the optimal amount of money for a single bet, and
is given by

(7.15)

E(Gbe,i) = Si (
p

ji

i

o
ji

i

− 1),

f ∗ = p − (1 − p)/b,



where f* is the fraction of bankroll to wager for the current bet, p is the
probability of a win, and b = 1/o − 1 is the proportion of the bet gained
with a win. The Kelly criterion can be extended to settings where the event
outcomes are not restricted to be binary but, more generally, categorical, as
in a football match. Unlikely for what happens in some gambling settings,
where the probability of winning the bet can be known a priori, in a
football match this is in general not accessible, and the best a bettor could
do is to bet play by using some plausible subjective/model probabilities.

To illustrate the strategy with a binary example, suppose a bettor wants to
invest some money on a horse race, by indicating the winner horse.
Suppose he conjectures the winning probability for the selected horse is 0.2,
whereas the odd for the horse provided by the bookmaker is 1:6.5, meaning
the inverse odd is equal to 0.153, and b = 1/o − 1 = 6.5 − 1 = 5.5. Then,
by applying the Equation (7.15), the ideal bankroll to wager is given by 
f ∗ = 0.2 − (0.8)/5.5 = 0.055, meaning that the bettor should bet 5.5% of
the bankroll in favour of the selected horse. As a matter of gambling
interpretation, if b equals (1 − p)/p, then f ∗ = 0, then the criterion
recommends the bettor to not invest any money on the given bet: in the
horse race example, this would mean that b = 0.8/0.2 = 4, which
corresponds to an betting odd of 1:5, less favourable than 1:6.5. If 
b < (1 − p)/p instead, then f ∗ < 0, meaning that the gambler should take
the other side of the bet.

Consider another famous example, the French roulette, where the
probabilities are known. Which is the ideal bankroll to wager for a red
outcome? There are 37 numbers on the wheel, from 0 to 36, among which
18 are red numbers and 19 non-red numbers—the 0 is neither red nor black.
Assume for simplicity that b = 1. The probability to win is known and
given by p = 18/37, whereas 1 − p = 19/37. We compute the Kelly



bankroll as f ∗ = 18/37 − 19/37 = −1/37, meaning the bettor should bet 
1/37 of his/her bankroll that red will not come up. However, there is no
explicit anti-red bet offered with comparable odds in roulette, so the best a
Kelly gambler can do is bet nothing on French roulette!

We can easily extend the Kelly criterion to the football framework, where
the main outcomes are: home win, draw, and away win. Consider again the
example provided in Section 7.2.4, Arsenal vs Manchester United, where
the inverse odds were: 1/2.5, 1/3, 1/3.2, then b = 1.5, 2, 2.2 in the three
cases. If we were some optimistic Arsenal fans and we had estimated an
Arsenal win probability of 0.45, the bankroll for the Arsenal win bet would
be f ∗ = 0.45 − 0.55/1.5 = 0.08, meaning that we should invest 8% of our
bankroll for the Arsenal win. What if we wanted to play with the
probabilities derived from the bookmakers through, say, the basic
normalization approach, 0.382, 0.319 and 0.299, respectively? Let's
evaluate the bankrolls for the three cases:

all the three bankrolls would be negative, then we are suggested to not bet
anything on this match: we got then another empirical confirmation of the
favourite-longshot bias for the bookmakers, as explained in Section 7.2.4.

To summarise, the Kelly criterion is a useful approach to decide how
much of the individual bankroll to wager on a given bet; nevertheless, the
individual probabilities should be very accurate to guarantee to not lose
money.

f ∗ =  0.382 − 0.618/1.5 = −0.03  bet on home win

f ∗ =  0.319 − 0.681/2 =    − 0.02  bet on draw

f ∗ =  0.299 − 0.701/2.2 = −0.02  bet on away win,



7.3.4 Expected profit optimization

According to a common sense the choice of the matches for which placing
one or more bets depends on our utility for betting: we could decide which
matches to bet on and obtain a favourable game to play as the posterior
expected profit is positive. Epstein (2012) proposed to bet on outcomes
with a positive expected profit but place the bets so we obtain a low
variance of the profit. According to a similar perspective, Rue and Salvesen
(2000) proposed to bet in order to maximize the expected profit while
keeping the variance of the profit lower than some threshold.

An equivalent formulation is to maximise the expected profit minus the
variance of the profit, which determine how we should place our bets up to
a multiplicative constant. This constant can be found if we choose a specific
value or an upper limit for the variance of the profit.

Let E(G
j
i) and (σ

j
i)

2 be the expected profit and the variance for betting
an unit amount on outcome j in match i, where 
j ∈ Δi = {‵‵Home win”,‵‵Draw”,‵‵Away win” }, respectively: we can
detect these values from the probabilities p

j
i  and inverse odds o

j
i , as

previously explained. For simplicity, suppose to not place more than one bet
for each match, and let β

j
i  be the corresponding bet. Let U(⋅) denote a

proper bettor utility function, then the optimal bet is given by setting the
condition:

(7.16)

 argmax
β

j
i≥0

 U({β
j
i}),    where 

U({β
j
i}) = E(profit) − Var(profit) = ∑

i∈β

β
j
i(E(G

j
i) − β

j
i(σ

j
i)

2).



The analytical solution is given by βj
i =max {0, E(G

j
i)/(2(σ

j
i)

2)}, where
additionally we choose the outcome j with maximal βj

iE(G
j
i) for match i in

order to not place more than one bet for each match.
As an imaginary example, consider again the odds from the example

considered in the previous sections, Arsenal vs Manchester United
considered in the previous sections. For this match the expected profit for
the single outcomes can be computed as pj/πj − 1, where pj and πj are the
bettor and the betting probabilities for the outcome j, respectively. Suppose
the bettor model probabilities for the home win, the draw and away win are:
0.41, 0.28, 0.31, whereas the bookmaker probabilities obtained through
basic normalization are: 0.382, 0.319, 0.299. We then get the following
expected profits from the bettor's perspective:

Under the case that (σ
j
i)

2 = 0.5 ∀j, Equation (7.12) implies the following
optimal bets selection:

Additionally, we choose to bet on Arsenal win, since βHE(GH
be) is the

highest value among the three possible combinations: then, the method
suggests to place 14.6 cents on the Arsenal win.

E(GH
be) =  0.41/0.382 − 1 = 0.073

E(GD
be) =  0.28/0.319 − 1 = −0.122

E(GL
be) =  0.31/0.299 − 1 = 0.037.

βH =   max {0, 0.073/[2 × (0.5)2]}   = 0.146

βD =   max {0, −0.122/[2 × (0.5)2]} = 0

βL =   max {0, 0.037/[2 × (0.5)2]}   = 0.074.



7.4 Case Study: Italian Serie A 2009–2010

In this section we apply the predictive performance introduced in Chapter 3
on a real case study based on the Italian Serie A 2009/2010, the same
season used in Chapters 4 and 5. Furthermore, the aim is to develop a sound
betting strategy based on the probabilistic predictions from our models and
the bookmakers' odds as collected by the website https://www.football-
data.co.uk/.

As a comparison benchmark, we consider ten bookmakers: Bet365, Bet
& Win, Blue Square, Gamebookers, Interwetten, Ladbrokes, Sportingbet,
Stan James, VC Bet, and William Hill. The odds considered are referred as
the pre-closing odds, in such a way that the odds for weekend games are
collected Friday afternoons, and on Tuesday afternoons for midweek
games: for each game we consider the home win, draw, and away win
betting odds.

We adopt the following notation already introduced in Section 3.3 in
Chapter 3: we denote the training set as T = {1, 2, … , n∗} and we will
generate results for the remaining games, that is the test/held-out set 
V = {n∗ + 1, n∗ + 2, … , n}. We outline two different scenarios: “mid-
season predictions” with n∗ = 190, and “leave-four-out” predictions, with 
n∗ = 340, with the last four match-days to be forecasted. Predictive and
betting performances—accuracy, Ranked Probability Score (RPS), Brier
Score (BS), pseudo-R2, and Average of Correct Probabilities (ACP)—see
Section 3.4 in Chapter 3—are investigated for three considered Bayesian
models, namely the double Poisson (DP, Section 4.4.1), the bivariate
Poisson (BP, Section 4.4.2), and the diagonal-inflated bivariate Poisson—
DIBP, Section 5.1.1 in Chapter 5—and for the ten aforementioned
bookmakers. As clearly emerges from Tables 7.2 and 7.3, the predictive

https://www.football-data.co.uk/


performances from the bookmakers—for which the betting odds are
normalized according to Equation (7.1) in Section 7.1.1—are greater than
those obtained under the three statistical models: as broadly remarked for
instance by Štrumbelj (2014), it is empirically known that the betting odds
represent the most accurate probabilistic evaluation for a football match. By
comparing the two scenarios, it is also evident how the predictive
performance, both for the bookmakers and statistical models, much improve
as the training sample size increases, from n∗ = 190 to n∗ = 340: this
confirms how both the actors, the model and the betting companies, learn
along the season and formulate better probabilistic forecasts as the season
evolves. The predictive performance in these tables have been computed
through the compare_foot() function in the footBayes package. A
minimal and illustrative code for the use of the function is provided here
below in Code Snippet 46. The function output is reported in Output 43.

TABLE 7.2
Italian Serie A 2009/2010, mid-season predictions (
n∗ = 190): measures of predictive performance. From the
second column until the sixth one: Ranked Probability Score
(RPS), accuracy (acc.), Brier Score (BS), pseudo-R2, and
Average of Correct Probabilities (ACP). Three considered
models: double Poisson (DP), bivariate Poisson (BP), and
diagonal-inflated bivariate Poisson (DIBP)⏎

Model/bookie RPS acc. BS ps.-R2 ACP
Bet365 0.19 0.54 0.58 0.38 0.41

Bet & Win 0.19 0.53 0.58 0.38 0.41
Blue Square 0.19 0.54 0.58 0.38 0.41

Gamebookers 0.19 0.54 0.58 0.38 0.41



Model/bookie RPS acc. BS ps.-R2 ACP
Interwetten 0.19 0.54 0.58 0.38 0.41
Ladbrokes 0.19 0.54 0.58 0.38 0.41

Sportingbet 0.19 0.53 0.58 0.38 0.41
Stan James 0.19 0.54 0.58 0.38 0.41

VC Bet 0.19 0.54 0.58 0.38 0.41
William Hill 0.18 0.54 0.58 0.38 0.41

DP 0.21 0.48 0.63 0.35 0.37
BP 0.21 0.47 0.64 0.35 0.36

DIBP 0.21 0.47 0.63 0.35 0.37

TABLE 7.3
Italian Serie A 2009/2010, “leave-four-out predictions” (
n∗ = 340): measures of predictive performance. From the
second column until the sixth one: Ranked Probability Score
(RPS), accuracy (acc.), Brier Score (BS), pseudo-R2, and
Average of Correct Probabilities (ACP). Three considered
models: double Poisson (DP), bivariate Poisson (BP), and
diagonal-inflated bivariate Poisson (DIBP)⏎

Model/Bookie RPS acc. BS ps.-R2 ACP
Bet365 0.17 0.64 0.48 0.43 0.49

Bet & Win 0.17 0.64 0.49 0.43 0.49
Blue Square 0.17 0.64 0.48 0.43 0.49

Gamebookers 0.17 0.63 0.49 0.43 0.49
Interwetten 0.17 0.66 0.48 0.44 0.49
Ladbrokes 0.17 0.64 0.49 0.43 0.49

Sportingbet 0.17 0.65 0.49 0.43 0.49



Model/Bookie RPS acc. BS ps.-R2 ACP
Stan James 0.17 0.63 0.49 0.43 0.49

VC Bet 0.17 0.64 0.49 0.43 0.49
William Hill 0.17 0.64 0.48 0.43 0.49

DP 0.21 0.55 0.60 0.37 0.39
BP 0.21 0.57 0.60 0.37 0.38

DIBP 0.21 0.52 0.59 0.37 0.39

Code Snippet 46 Italian Serie A 2009/2010: predictive performances. ⏎

library(footBayes)

library(dplyr)

 

data(italy) # available in the package

italy_2009 <- subset(italy[, c(2,3,4,6,7)], Season =="2009")

colnames(italy_2009) <- c("periods", "home_team", 

"away_team",

                                "home_goals", "away_goals") 

# rename!

n_train <- 190

n_test <- 190 # mid-season predictions

 

dp_stan <- stan_foot(data = italy_2009,

                     model="double_pois",

                     predict = n_test) # dp

bp_stan <- stan_foot(data = italy_2009,

                     model="biv_pois",

                     predict = n_test) # bp



bp_stan_infl <- stan_foot(data = italy_2009,

                          model="diag_infl_biv_pois",

                          predict = n_test) # inflated bp

 

test_data <- italy_2009[(n_train+1):(n_train+n_test), ]

compare_foot(list(dp = dp_stan, bp = bp_stan,

                    bp_infl = bp_stan_infl), test_data = 

test_data)

   Model    RPS    accuracy  brier    pseudoR2   ACP

1 dp      0.2077    0.4789  0.6302    0.3513   0.3723

2 bp      0.2099    0.4789  0.6354    0.3480   0.3634

3 bp_infl 0.2083    0.4737  0.6317    0.3503   0.3695

Output 43: Italian Serie A 2009/2010: probabilistic predictive performance
of three models. ⏎

In terms of betting actions, we use the probabilistic forecasts obtained
from the double Poisson model—the model that yields the best predictive
performances in Output 43—and start with the Dixon & Coles strategy
proposed in Section 7.3.1, by allowing for different values of the margin
tolerance δ. As depicted in Figure 7.2 in the top panel plots, the joint choice
of n* and the margin tolerance has a relevant effect on the net profit: in fact,
in the top left plot, with n∗ = 190, a positive profit is obtained only for one
bookmaker (William Hill) and only when the threshold δ in Section 7.3.1 is
about 1.6. Instead, when the training sample size is n∗ = 340, in the top
right plot, a positive profit can be obtained from the majority of the



bookmakers when δ is bounded between the values 1.2 and 1.6: VC Bet is
the most “advantageous” bookmaker, since the profit we can obtain playing
with its odds approximates the 20% when δ ≈ 1.6.

Long Description for Figure 7.2



FIGURE 7.2
Italian Serie A 2009/2010, betting strategy using the double Poisson
probabilistic forecasts and based on: the Dixon & Coles rule detailed in
Section 7.3.1 (top plots); the highest expected return (HER) rule in 7.3.2
(mid plots); and the Kelly's approach in 7.3.3 (bottom plots). Two
scenarios: mid-season predictions with n∗ = 190 (left panels) and “leave-
four-out” predictions with n∗ = 340 (right panels). The single unit bet is 1
Dollar/Euro. The level of margin tolerance is plotted on the x-axis whereas
the percentage profit is on the y-axis.⏎

Another betting strategy could be adopted by following the highest
expected return (HER) approach proposed in Section 7.3.2. Mid plots in
Figure 7.2 depict the profit trends for both the training scenarios in function
of the margin tolerance δ—note that in this approach, as remarked by
Equation (7.14), the margin tolerance discriminates the ratios p/o > δ,
where as usual p denotes the model probability and o the inverse betting
odd. Also according to this approach, the profit can be obtained quite easily
in the second scenario (mid right plot), where VC Bet is again the most
profitable betting company from a bettor's perspective, and is associated
with a profit approximating 20% when δ ≈ 1.45.

Finally, the Kelly criterion in Section 7.3.3 is explored. As documented
by many prominent experts, the Kelly criterion is very “aggressive” and
could yield problematic trends in terms of final profits. In fact, the profit
trends are reported against the margin tolerance γ—where we choose to bet
on the outcomes such that b × p/(1 − p) > γ —in Figure 7.2, bottom plots.
From this experiment, it is pretty impossible to yield a positive profit, and
the trend decreases as the tolerance increases. In partial agreement with the
other two approaches, we may note again that the profits are higher when 



n∗ = 340 —at least, the losses are less serious—in the bottom right plot,
since the probabilistic forecasts are more accurate. We need also to note that
deriving an optimal betting strategy for the Kelly criterion when dealing
with multiple exclusive outcomes as in football is not an easy task, and
many alternative algorithmic choices could be adopted. For this reason, we
maintain that this third approach is just merely meant as an illustrative
example, but it should not be considered as a real manner to make money
from the bookmakers.

The final comment is that even if the probabilistic performance of our
statistical models are not greater than those provided by the bookmakers
operating in the market in terms of predictive performance, it is still
possible to set up a profitable strategy to make money from them, as
thoroughly shown through the Dixon & Coles and the highest expected
return strategies.



7.5 Summary and closing remarks of Chapter 7

Beating and making money from the bookmakers is usually seen as the
most appealing task when producing football predictions, however this is
often unrealistic. To challenge the bookmakers' predictions, one should
understand how the usual odds relate to the probabilities of a given event, in
this case a football match. In this chapter we provided an overview about
the bookmakers' markets and some existing betting strategies as far as
reviewing the current scientific literature; moreover, we provided a real
case-study by using some predictive measures to assess the effectiveness of
some model-based probabilistic predictions.

Section 7.1 explains how to transform the betting odds into probabilities
by introducing the basic normalization in Section 7.1.1, the Shin's
procedure in Section 7.1.2, and some regression analysis techniques in
Section 7.1.3. The bookmaker market is then mathematically introduced in
Section 7.2, with examples involving: one bookmaker and one event in
Section 7.2.1, one bookmaker and more events in Section 7.2.2, and more
bookmakers and more events in Section 7.2.3. The purpose of these section
is to explain how to properly compute the expected profits, from both the
bettor and the bookmaker perspective, and introduce the concept of
fairness. Section 7.2.4 introduces the concept of gain, or margin, contained
in the odds released by the bookies.

Some betting strategies are then provided in Section 7.3, such as the
Dixon & Coles criterion in Section 7.3.1, the Kelly criterion introduced in
Section 7.3.3, and the expected profit optimization in Section 7.3.4. Section
7.4 illustrates through a real case study focused on the Italian Serie A
2009/2010 the computation of various predictive performances arising in a
football match by using the footBayes package and proposes some possible



strategies to make money from the bookmakers when splitting a season in
training and test sets.



Bibliography

Agresti, A. (2013). Categorical Data Analysis. Wiley and Sons, Hoboken, NJ, 3rd edition.⏎

Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Wiley and Sons,

Hoboken, NJ.⏎

Akaike, H. (1973). “Information theory and an extension of the maximum likelihood principle”. in B.

Petrov and F. Csaki, eds., Proceedings of 2nd International Symposium on Information Theory,

pages 267–281. Academiai Kiado, Budapest.⏎

Albert, J. (2009). Bayesian Computation with R. Springer, Dordrecht.⏎

Angelini, G. and De Angelis, L. (2017). Parx model for football match predictions. Journal of

Forecasting, 36(7):795–807.⏎

Anzer, G., Bauer, P., and Brefeld, U. (2021). The origins of goals in the German Bundesliga. Journal

of Sports Sciences, 39(22):2525–2544.⏎

Asif, M. and McHale, I. G. (2016). In-play forecasting of win probability in one-day international

cricket: A dynamic logistic regression model. International Journal of Forecasting, 32(1):34–

43.⏎

Baboota, R. and Kaur, H. (2019a). Predictive analysis and modelling football results using machine

learning approach for English premier league. International Journal of Forecasting, 35(2):741–

755.⏎

Baboota, R. and Kaur, H. (2019b). Predictive analysis and modelling football results using machine

learning approach for English premier league. International Journal of Forecasting, 35(2):741–

755.⏎

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football

results. Journal of Applied Statistics, 37(2):253–264.⏎



Baker, R. and Scarf, P. (2020). Modifying Bradley–Terry and other ranking models to allow ties. IMA

Journal of Management Mathematics, 32(4):451–463.⏎

Barbieri, M. and Berger, J. (2004). ‘Optimal predictive model selection’. Annals of Statistics,

32:870–897.⏎

Barbiero, A. (2020). Discrete Weibull regression for modelling football outcomes. International

Journal of Business Intelligence and Data Mining, 17(1):76–100.⏎

Barnett, V. and Hilditch, S. (1993). The effect of an artificial pitch surface on home team

performance in football (soccer). Journal of the Royal Statistical Society Series A: Statistics in

Society, 156(1):39–50.⏎

Bartlett, M. (1957). ‘Comment on D.V. Lindley's statistical paradox’. Biometrika, 44:533–534.⏎

Baxter, M. and Stevenson, R. (1988). Discriminating between the Poisson and negative binomial

distributions: An application to goal scoring in association football. Journal of Applied Statistics,

15(3):347–354.⏎

Benz, L. S. and Lopez, M. J. (2023). Estimating the change in soccer's home advantage during the

covid-19 pandemic using bivariate Poisson regression. AStA Advances in Statistical Analysis,

107(1–2):205–232.⏎

Bernardo, J. and Smith, A. (2000). Bayesian Theory, 2nd edition. Wiley, Chichester, UK.⏎

Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint

arXiv:1701.02434.⏎

Betancourt, M. and Girolami, M. (2015a). Hamiltonian Monte Carlo for hierarchical models. Current

Trends in Bayesian Methodology with Applications, 79(30):2–4.⏎

Betancourt, M. and Girolami, M. (2015b). “Hamiltonian Monte Carlo for hierarchical models”. in

Current Trends in Bayesian Methodology with Applications (S. K. Upadhyay, U. Singh, D.K. Dey,

and A. Loganathan, eds), pages (Ch. 4) 79–102. Chapman and Hall/CRC, New York.⏎

Böhning, D., Dietz, E., Schlattmann, P., Mendonca, L., and Kirchner, U. (1999). The zero-inflated

Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of

the Royal Statistical Society: Series A (Statistics in Society), 162(2):195–209.⏎



Boshnakov, G., Kharrat, T., and McHale, I. G. (2017). A bivariate Weibull count model for

forecasting association football scores. International Journal of Forecasting, 33(2):458–466.⏎

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of

paired comparisons. Biometrika, 39(3/4):324–345.⏎

Brier, G. W. et al. (1950). Verification of forecasts expressed in terms of probability. Monthly

Weather Review, 78(1):1–3.⏎

Brillinger, D. R. (2008). Modelling game outcomes of the Brazilian 2006 series a championship as

ordinal-valued. Brazilian Journal of Probability and Statistics, pages 89–104.⏎

Brillinger, D. R. (2009). An analysis of Chinese super league partial results. Science in China Series

A: Mathematics, 52(6):1139–1151.⏎

Brooks, S. P. and Roberts, G. O. (1998). ‘Assessing convergence of Markov chain Monte Carlo

algorithms’. Statistics and Computing, 8:319–335.⏎

Buraimo, B., Forrest, D., and Simmons, R. (2010). The 12th man?: refereeing bias in English and

German soccer. Journal of the Royal Statistical Society Series A: Statistics in Society,

173(2):431–449.⏎

Cain, M., Law, D., and Peel, D. (2002). Is one price enough to value a state-contingent asset

correctly? Evidence from a gambling market. Applied Financial Economics, 12(1):33–38.⏎

Cain, M., Law, D., and Peel, D. (2003). The favourite-longshot bias, bookmaker margins and insider

trading in a variety of betting markets. Bulletin of Economic Research, 55(3):263–273.⏎

Carlos, L.-P., Ezequiel, R., and Anton, K. (2019). How does video assistant referee (var) modify the

game in elite soccer? International Journal of Performance Analysis in Sport, 19(4):646–653.⏎

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo,

J., Li, P., and Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of

Statistical Software, 76.⏎

Carpita, M., Ciavolino, E., and Pasca, P. (2019). Exploring and modelling team performances of the

Kaggle European soccer database. Statistical Modelling, 19(1):74–101.⏎

Carpita, M., Sandri, M., Simonetto, A., and Zuccolotto, P. (2015). Discovering the drivers of football

match outcomes with data mining. Quality Technology & Quantitative Management, 12(4):561–



577.⏎

Casas, A. and Fawaz, Y. (2016). Altitude as handicap in rank-order football tournaments. Applied

Economics Letters, 23(3):180–183.⏎

Cattelan, M., Varin, C., and Firth, D. (2013). Dynamic Bradley–Terry modelling of sports

tournaments. Journal of the Royal Statistical Society Series C: Applied Statistics, 62(1):135–

150.⏎

Chumacero, R. A. (2009). Altitude or hot air? Journal of Sports Economics, 10(6):619–638.⏎

Clarke, S. R. and Norman, J. M. (1995). Home ground advantage of individual clubs in English

soccer. Journal of the Royal Statistical Society: Series D (The Statistician), 44(4):509–521.⏎

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1):37–46.⏎

Constantinou, A. C. and Fenton, N. E. (2012a). Solving the problem of inadequate scoring rules for

assessing probabilistic football forecast models. Journal of Quantitative Analysis in Sports,

8(1).⏎

Constantinou, A. C. and Fenton, N. E. (2012b). Solving the problem of inadequate scoring rules for

assessing probabilistic football forecast models. Journal of Quantitative Analysis in Sports,

8(1).⏎

Cowles, M. and Carlin, B. (1996). ‘Markov chain Monte Carlo convergence diagnostics: A

comparative review’. Journal of the American Statistical Association, 91:883–904.⏎

Crowder, M., Dixon, M., Ledford, A., and Robinson, M. (2002). Dynamic modelling and prediction

of english football league matches for betting. Journal of the Royal Statistical Society Series D:

The Statistician, 51(2):157–168.⏎

Davidson, R. R. and Beaver, R. J. (1977). On extending the Bradley-Terry model to incorporate

within-pair order effects. Biometrics, pages 693–702.⏎

Davidson, R. R. J. (1970). On extending the Bradley-Terry model to accommodate ties in paired

comparison experiments. Journal of the American Statistical Association, 65:317–328.⏎

Dawson, P., Dobson, S., Goddard, J., and Wilson, J. (2007). Are football referees really biased and

inconsistent?: evidence on the incidence of disciplinary sanction in the english premier league.



Journal of the Royal Statistical Society Series A: Statistics in Society, 170(1):231–250.⏎

de Finetti, B. (1931). Sul significato soggettivo della probabilità. Fundamenta Mathematicae,

17:298–329.⏎

De Finetti, B. (1970). Logical foundations and measurement of subjective probability. Acta

Psychological, 34:129–145.⏎

Deb, S. (2022). A goal based index to analyze the competitive balance of a football league. Journal

of Quantitative Analysis in Sports, 18(3):171–186.⏎

Dempster, A., Laird, N., and Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via

the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39:1–38.⏎

Diniz, M. A., Izbicki, R., Lopes, D., and Salasar, L. E. (2019). Comparing probabilistic predictive

models applied to football. Journal of the Operational Research Society, 70(5):770–782.⏎

Dixon, M. and Coles, S. (1997). Modelling association football scores and inefficiencies in football

betting market. Journal of the Royal Statistical Society C, 46:265–280.⏎

Dixon, M. and Robinson, M. (1998). A birth process model for association football matches. Journal

of the Royal Statistical Society: Series D (The Statistician), 47(3):523–538.⏎

Dobson, S., Goddard, J., et al. (2017). Evaluating probabilities for a football in-play betting market.

The Economics of Sports Betting, pages 52–70.⏎

Dobson, S., Goddard, J. A., and Dobson, S. (2001). The economics of football, volume 10.

Cambridge University Press, Cambridge.⏎

Dowie, J. (1982). Why Spain should win the world cup. New Scientist, 94(10):693–695.⏎

Dybvig, P. H. and Ross, S. A. (1989). Arbitrage. In Finance, pages 57–71. Springer.⏎

Egidi, L. and Gabry, J. (2018). Bayesian hierarchical models for predicting individual performance in

soccer. Journal of Quantitative Analysis in Sports, 14(3):143–157.⏎

Egidi, L., Pauli, F., and Torelli, N. (2018a). Are the shots predictive for the football results?⏎

Egidi, L., Pauli, F., and Torelli, N. (2018b). Combining historical data and bookmakers’ odds in

modelling football scores. Statistical Modelling, 18(5–6):436–459.⏎

Egidi, L. and Torelli, N. (2021a). Comparing goal-based and result-based approaches in modelling

football outcomes. Social Indicators Research, 156:801–813.⏎



Epstein, E. S. (1969). A scoring system for probability forecasts of ranked categories. Journal of

Applied Meteorology, 8(6):985–987.⏎

Epstein, R. A. (2012). The Theory of Gambling and Statistical Logic. Academic Press.⏎

Erkanli, A. (1994). ‘Laplace approximations for posterior expectation when the model occurs at the

boundary of the parameter space’. Journal of the American Statistical Association, 89:205–258.⏎

Evans, M. and Swartz, T. (1996). ‘Discussion of methods for approximating integrals in statistics

with special emphasis on Bayesian integration problems’. Statistical Science, 11:54–64.⏎

Fagerland, M. W., Hosmer, D. W., and Bofin, A. M. (2008). Multinomial goodness-of-fit tests for

logistic regression models. Statistics in Medicine, 27:4238–4253.⏎

Fischer, K. and Haucap, J. (2021). Does crowd support drive the home advantage in professional

football? evidence from German ghost games during the covid-19 pandemic. Journal of Sports

Economics, 22(8):982–1008.⏎

Gabry, J., Češnovar, R., Johnson, A., and Bronder, S. (2024). cmdstanr: R Interface to ‘CmdStan’. R

package version 0.8.1, https://discourse.mc-stan.org.⏎

Gan, N. (2000). General zero-inflated models and their applications.⏎

Gelfand, A., Hills, S., Racine-Poon, A., and Smith, A. (1990). ‘Illustration of Bayesian inference in

normal data models using Gibbs sampling’. Journal of the American Statistical Association,

85:972–985.⏎

Gelfand, A. and Smith, A. (1990). ‘Sampling-based approaches to calculating marginal densities’.

Journal of the American Statistical Association, 85. 398–409.⏎

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on

article by Browne and Draper).⏎

Gelman, A. (2014). Stan goes to the world cup.⏎

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian

Data Analysis. Chapman and Hall/CRC.⏎

Gelman, A. and Hill, J. (2006). Data Analysis using Regression and Multilevel/hierarchical Models.

Cambridge University Press.⏎

https://discourse.mc-stan.org/


Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for

Bayesian models. Statistics and Computing, 24(6):997–1016.⏎

Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y.-S. (2008). A weakly informative default prior

distribution for logistic and other regression models. Annals of Applied Statistics, 2(4):1360–

1383.⏎

Gelman, A., Meng, X.-L., and Stern, H. (1996). Posterior predictive assessment of model fitness via

realized discrepancies. Statistica Sinica, pages 733–760.⏎

Gelman, A., Rubin, D. B., et al. (1992). Inference from iterative simulation using multiple sequences.

Statistical Science, 7(4):457–472.⏎

Geman, S. and Geman, D. (1984a). ‘Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images’. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–

741.⏎

Geman, S. and Geman, D. (1984b). Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):721–

741.⏎

Genest, C. and Nešlehová, J. (2007). A primer on copulas for count data. ASTIN Bulletin: The

Journal of the IAA, 37(2):475–515.⏎

Gilks, W., Richardson, S., and Spiegelhalter, D. (1996). Markov Chain Monte Carlo in Practice.

Interdisciplinary Statistics. Chapman & Hall, Suffolk, UK.⏎

Giulianotti, R. and Robertson, R. (2004). The globalization of football: a study in the glocalization of

the ‘serious life’. British Journal of Sociology, 55:545–568.⏎

Givens, G. H. and Hoeting, J. A. (2012). Computational Statistics. John Wiley & Sons, Hoboken, NJ,

USA, 2nd edition.⏎

Glenn, W. A. and David, H. A. (1960). Ties in paired-comparison experiments using a modified

Thurstone–Mosteller model. Biometrics, 16:86–109.⏎

Goddard, J. (2005a). Regression models for forecasting goals and match results in association

football. International Journal of Forecasting, 21(2):331–340.⏎



Goes, F., Meerhoff, L., Bueno, M., Rodrigues, D., Moura, F., Brink, M., Elferink-Gemser, M.,

Knobbe, A., Cunha, S., Torres, R., et al. (2021). Unlocking the potential of big data to support

tactical performance analysis in professional soccer: A systematic review. European Journal of

Sport Science, 21(4):481–496.⏎

Goes, K. (2021). Estimating the most important football player statistics using neural networks. B.S.

thesis.⏎

Groll, A. and Abedieh, J. (2013). Spain retains its title and sets a new record–generalized linear

mixed models on European football championships. Journal of Quantitative Analysis in Sports,

9(1):51–66.⏎

Groll, A., Hvattum, L. M., Ley, C., Popp, F., Schauberger, G., Van Eetvelde, H., and Zeileis, A.

(2021). Hybrid machine learning forecasts for the UEFA Euro 2020. arXiv preprint

arXiv:2106.05799.⏎

Groll, A., Kneib, T., Mayr, A., and Schauberger, G. (2016). Who's the favourite?–a bivariate Poisson

model for the UEFA European football championship 2016.⏎

Groll, A., Kneib, T., Mayr, A., and Schauberger, G. (2018a). On the dependency of soccer scores–a

sparse bivariate Poisson model for the UEFA European football championship 2016. Journal of

Quantitative Analysis in Sports, 14(2):65–79.⏎

Groll, A., Ley, C., Schauberger, G., and Van Eetvelde, H. (2018b). Prediction of the fifa world cup

2018-a random forest approach with an emphasis on estimated team ability parameters. arXiv

preprint arXiv:1806.03208.⏎

Groll, A., Schauberger, G., and Tutz, G. (2015). Prediction of major international soccer tournaments

based on team-specific regularized Poisson regression: An application to the FIFA world cup

2014. Journal of Quantitative Analysis in Sports, 11(2):97–115.⏎

Harvey, A. C. and Fernandes, C. (1989). Time series models for count or qualitative observations.

Journal of Business & Economic Statistics, 7(4):407–417.⏎

Hastings, W. (1970). ‘Monte Carlo sampling methods using Markov chains and their applications’.

Biometrika, 57:97–109.⏎



Henery, R. J. (1992). An extension to the Thurstone-Mosteller model for chess. Journal of the Royal

Statistical Society Series D: The Statistician, 41(5):559–567.⏎

Heuer, A. and Rubner, O. (2009). Fitness, chance, and myths: an objective view on soccer results.

The European Physical Journal B, 67:445–458.⏎

Hosmer, D. W., Hosmer, T., le Cessie, S., and Lemeshow, S. (1997). A comparison of goodness-of-fit

tests for the logistic regression model. Statistics in Medicine, 16:965–980.⏎

Hosmer, D. and Lemeshow, S. (1980). A goodness-of-fit test for multiple logistic regression model.

Communications in Statistics A, 9:1043–1069.⏎

Hvattum, L. M. and Arntzen, H. (2010). Using elo ratings for match result prediction in association

football. International Journal of Forecasting, 26(3):460–470.⏎

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, volume

165. Wiley New York.⏎

Jullien, B., Salanié, B., et al. (1994). Measuring the incidence of insider trading: a comment on Shin.

Economic Journal, 104(427):1418–1419.⏎

Karlis, D. and Ntzoufras, I. (2000a). On modelling soccer data. Student, 3:229–244.⏎

Karlis, D. and Ntzoufras, I. (2000b). On modelling soccer data. Student, 3(4):229–244.⏎

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models.

Journal of the Royal Statistical Society D, 52(3):381–393.⏎

Karlis, D. and Ntzoufras, I. (2006). Bayesian analysis of the differences of count data. Statistics in

Medicine, 25(11):1885–1905.⏎

Karlis, D. and Ntzoufras, I. (2009). Bayesian modelling of football outcomes: using the Skellam's

distribution for the goal difference. IMA Journal of Management Mathematics, 20:133–146.⏎

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,

90(430):773–795.⏎

Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion. Journal of American Statistical Association, 90:928–934.⏎

Kelly, J. L. (1956). A new interpretation of information rate. The Bell System Technical Journal,

35(4):917–926.⏎



Kharratzadeh, M. (2017). Hierarchical Bayesian modeling of the english premier league.⏎

Klemp, M., Wunderlich, F., and Memmert, D. (2021). In-play forecasting in football using event and

positional data. Scientific Reports, 11(1):24139.⏎

Kocherlakota, S. and Kocherlakota, K. (2017). Bivariate Discrete Distributions. CRC Press.⏎

Koopman, S. J. and Lit, R. (2015). A dynamic bivariate Poisson model for analysing and forecasting

match results in the English Premier League. Journal of the Royal Statistical Society A, 178:167–

186.⏎

Koopman, S. J. and Lit, R. (2019a). Forecasting football match results in national league

competitions using score-driven time series models. International Journal of Forecasting,

35(2):797–809.⏎

Kuk, Y. C. (1995). Modelling paired comparison data with large numbers of draws and large

variability of draw percentages among players. Statistician, 44:523–528.⏎

Lago-Peñas, C., Gómez, M., and Pollard, R. (2021). The effect of the video assistant referee on

referee's decisions in the Spanish Laliga. International Journal of Sports Science & Coaching,

16(3):824–829.⏎

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in

manufacturing. Technometrics, 34(1):1–14.⏎

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data.

Biometrics, 33(1):159–174.⏎

Lee, A. (1997). Modeling scores in the Premier League: Is Manchester United really the best?

Chance, 10:15–19.⏎

Lee, A. (1999). Applications: Modelling rugby league data viabivariate negative binomial regression.

Australian & New Zealand Journal of Statistics, 41(2):141–152.⏎

Li, C.-S., Lu, J.-C., Park, J., Kim, K., Brinkley, P. A., and Peterson, J. P. (1999). Multivariate zero-

inflated Poisson models and their applications. Technometrics, 41(1):29–38.⏎

Lindley, D. (1957). ‘A statistical paradox’. Biometrika, 44:187–192.⏎

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2013). The BUGS Book: A

Practical Introduction to Bayesian Analysis. Chapman and Hall/CRC, New York.⏎



Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS — a Bayesian modelling

framework: concepts, structure, and extensibility. Statistics and Computing, 10:325–337.⏎

Macr Demartino, R., Egidi, L., and Torelli, N. (2024). Alternative ranking measures to predict

international football results. Computational Statistics, pages 1–19.⏎

Maher, M. (1982). Modelling association football scores. Statistica Neerlandica, 36:109–118.⏎

Manderson, A., Murray, K., and Turlach, B. (2018). Dynamic Bayesian forecasting of afl match

results using the skellam distribution. Australian & New Zealand Journal of Statistics, 60(2):174–

187.⏎

Martin, A. D., Quinn, K. M., and Park, J. H. (2011). MCMCpack: Markov chain monte carlo in R.

Journal of Statistical Software, 42(9):22.⏎

Mattera, R. (2023). Forecasting binary outcomes in soccer. Annals of Operations Research,

325(1):115–134.⏎

McHale, I. and Scarf, P. (2007). Modelling soccer matches using bivariate discrete distributions with

general dependence structure. Statistica Neerlandica, 61(4):432–445.⏎

McHale, I. and Scarf, P. (2011a). Modelling the dependence of goals scored by opposing teams in

international soccer matches. Statistical Modelling, 11(3):219–236.⏎

McHale, I. and Scarf, P. (2011b). Modelling the dependence of goals scored by opposing teams in

international soccer matches. Statistical Modelling, 11(3):219–236.⏎

McShane, B., Adrian, M., Bradlow, E. T., and Fader, P. S. (2008). Count models based on Weibull

interarrival times. Journal of Business & Economic Statistics, 26(3):369–378.⏎

Mechtel, M., Bäker, A., Brändle, T., and Vetter, K. (2011). Red cards: Not such bad news for

penalized guest teams. Journal of Sports Economics, 12(6):621–646.⏎

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). ‘Equations of state

calculations by fast computing machine’. Journal of Chemical Physics, 21:1087–1092.⏎

Moroney, M. J. (1956). Facts from Figures, volume 236. Penguin books Harmondsworth,

Middlesex.⏎

Murphy, A. H. (1970). The ranked probability score and the probability score: A comparison.

Monthly Weather Review, 98(12):917–924.⏎



Myers, B. R. (2012). A proposed decision rule for the timing of soccer substitutions. Journal of

Quantitative Analysis in Sports, 8(1).⏎

Nadarajah, S. and Chan, S. (2018). Discrete distributions based on inter arrival times with application

to football data. Communications in Statistics-Theory and Methods, 47(1):147–165.⏎

Neave, N. and Wolfson, S. (2003). Testosterone, territoriality, and the ‘home advantage’. Physiology

& Behavior, 78(2):269–275.⏎

Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal

Statistical Society Series A: Statistics in Society, 135(3):370–384.⏎

Nelsen, R. B. (2006). An Introduction to Copulas. Springer.⏎

Nevill, A. M., Balmer, N. J., and Williams, A. M. (2002). The influence of crowd noise and

experience upon refereeing decisions in football. Psychology of Sport and Exercise, 3(4):261–

272.⏎

Nevill, A. M., Newell, S. M., and Gale, S. (1996). Factors associated with home advantage in english

and Scottish soccer matches. Journal of Sports Sciences, 14(2):181–186.⏎

Nevo, D. and Ritov, Y. (2013). Around the goal: examining the effect of the first goal on the second

goal in soccer using survival analysis methods. Journal of Quantitative Analysis in Sports,

9(2):165–177.⏎

Nikoloulopoulos, A. K. (2013). Copula-based models for multivariate discrete response data. In

Copulae in Mathematical and Quantitative Finance: Proceedings of the Workshop Held in

Cracow, 10-11 July 2012, pages 231–249. Springer.⏎

Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS. Wiley Series in Computational Statistics.

Hoboken, NJ.⏎

Ntzoufras, I. (2011). Bayesian Modeling using WinBUGS, volume 698. John Wiley & Sons.⏎

Ötting, M. and Karlis, D. (2023). Football tracking data: a copula-based hidden Markov model for

classification of tactics in football. Annals of Operations Research, 325(1):167–183.⏎

Owen, A. (2011). Dynamic Bayesian forecasting models of football match outcomes with estimation

of the evolution variance parameter. IMA Journal of Management Mathematics, 22:99–113.⏎



Park, J. H., Cameletti, M., Pang, X., and Quinn, K. M. (2023). Cran task view: Bayesian inference

(version 2023-07-17). CRAN Task View.⏎

Pawlowski, T. and Nalbantis, G. (2019). Competitive balance: Measurement and relevance. The

SAGE Handbook of Sports Economics, pages 154–162.⏎

Pearson, M., Livingston, G., Jr, and King, R. (2020). An exploration of predictive football modelling.

Journal of Quantitative Analysis in Sports, 16(1):27–39.⏎

Peng, R. D. (2022). Advanced Statistical Computing. Online book available at bookdown.org,

available at https://bookdown.org/rdpeng/advstatcomp/.⏎

Plummer, M. (2003). JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs

Sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing

(DSC 2003), March 20–22, Vienna, Austria. ISSN 1609-395X.⏎

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). ‘CODA: Convergence diagnosis and

output analysis for MCMC’. R News, 6(1):7–11, available at http://CRAN.R-

project.org/doc/Rnews/Rnews_2006-1.pdf.⏎

Pollard, R. (1986). Home advantage in soccer: A retrospective analysis. Journal of Sports Sciences,

4(3):237–248.⏎

Rao, P. V. and Kupper, L. L. (1970). Ties in paired-comparison experiments: A generalization of the

Bradley-Terry model. Journal of the American Statistical Association, 62:194–204.⏎

Rathke, A. (2017). An examination of expected goals and shot efficiency in soccer. Journal of

Human Sport and Exercise, 12(2):514–529.⏎

Reep, C. and Benjamin, B. (1968). Skill and chance in association football. Journal of the Royal

Statistical Society. Series A (General), 131(4):581–585.⏎

Reep, C., Pollard, R., and Benjamin, B. (1971). Skill and chance in ball games. Journal of the Royal

Statistical Society Series A: Statistics in Society, 134(4):623–629.⏎

Ridder, G., Cramer, J. S., and Hopstaken, P. (1994). Down to ten: Estimating the effect of a red card

in soccer. Journal of the American Statistical Association, 89(427):1124–1127.⏎

Rissanen, J. (1986). Order estimation by accumulated prediction errors. Journal of Applied

Probability, 23:55–61.⏎

http://bookdown.org/
https://bookdown.org/rdpeng/advstatcomp/
http://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf


Robert, C. and Casella, G. (2013). Monte Carlo Statistical Methods. Springer Science & Business

Media.⏎

Rossi, A., Pappalardo, L., Cintia, P., Fernández, J., Iaia, M. F., Medina, D., et al. (2017). Who is

going to get hurt? predicting injuries in professional soccer. In MLSA@ PKDD/ECML, pages 21–

30.⏎

Rue, H. and Salvesen, O. (2000). Prediction and retrospective analysis of soccer matches in a league.

Journal of the Royal Statistical Society D, 49:399–418.⏎

Scarf, P., Khare, A., and Alotaibi, N. (2022). On skill and chance in sport. IMA Journal of

Management Mathematics, 33(1):53–73.⏎

Scarf, P. and Rangel Jr, J. S. (2017). Models for outcomes of soccer matches. In Handbook of

Statistical Methods and Analyses in Sports, pages 357–370. Chapman and Hall/CRC.⏎

Schauberger, G., Groll, A., and Tutz, G. (2016). Modeling football results in the German Bundesliga

using match-specific covariates. Technical Report, Department of Statistics, University of Munich,

197:77–95.⏎

Schauberger, G., Groll, A., and Tutz, G. (2018a). Analysis of the importance of on-field covariates in

the German Bundesliga. Journal of Applied Statistics, 45(9):1561–1578.⏎

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461–464.⏎

Shahtahmassebi, G. and Moyeed, R. (2016). An application of the generalized Poisson difference

distribution to the Bayesian modelling of football scores. Statistica Neerlandica, 70(3):260–

273.⏎

Shao, J. (1993). Linear model selection by cross-validation. Journal of American Statistical

Association, 88:486–494.⏎

Shao, J. (1997). An asymptotically theory for linear model selection (with discussion). Statistica

Sinica, 7:221–264.⏎

Shin, H. S. (1991). Optimal betting odds against insider traders. The Economic Journal,

101(408):1179–1185.⏎

Shin, H. S. (1993). Measuring the incidence of insider trading in a market for state-contingent claims.

The Economic Journal, 103(420):1141–1153.⏎



Silva, R. M. and Swartz, T. B. (2016). Analysis of substitution times in soccer. Journal of

Quantitative Analysis in Sports, 12(3):113–122.⏎

Skellam, J. G. (1946). The frequency distribution of the difference between two Poisson variates

belonging to different populations. Journal of the Royal Statistical A, 109:296.⏎

Smit, R. C., Ravazzolo, F., Rossini, L., et al. (2020). Dynamic Bayesian forecasting of english

premier league match results with the skellam distribution. Technical report, Faculty of

Economics and Management at the Free University of Bozen.⏎

Smith, B. J. (2007). boa: An r package for mcmc output convergence assessment and posterior

inference. Journal of Statistical Software, 21(11):1–37.⏎

Smith, M. A., Paton, D., and Williams, L. V. (2009). Do bookmakers possess superior skills to bettors

in predicting outcomes? Journal of Economic Behavior & Organization, 71(2):539–549.⏎

Sors, F., Grassi, M., Agostini, T., and Murgia, M. (2021). The sound of silence in association

football: Home advantage and referee bias decrease in matches played without spectators.

European journal of sport science, 21(12):1597–1605.⏎

Spiegelhalter, D. and Ng, Y.-L. (2009). One match to go! Significance, 6(4):151–153.⏎

Spiegelhalter, D., Thomas, A., Best, N., and Gilks, W. (1996). BUGS 0.5: Bayesian Inference Using

Gibbs Sampling Manual. MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK.⏎

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003). WinBUGS User Manual, Version 1.4.

MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public

Health, Imperial College School of Medicine, UK, available at http://www.mrc-

bsu.cam.ac.uk/bugs.⏎

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of

model complexity and fit. Journal of the Royal Statistical Society B, 64(4):583–639.⏎

Spitz, J., Wagemans, J., Memmert, D., Williams, A. M., and Helsen, W. F. (2021). Video assistant

referees (var): The impact of technology on decision making in association football referees.

Journal of Sports Sciences, 39(2):147–153.⏎

Stan Development Team (2022). RStan: the R interface to Stan. R package version 2.21.7.⏎

http://www.mrc-bsu.cam.ac.uk/bugs


Stefani, R. T. (1980). Improved least squares football, basketball, and soccer predictions. IEEE

Transactions on Systems, Man, and Cybernetics, 10(2):116–123.⏎

Stefani, R. T. (1983). Observed betting tendencies and suggested betting strategies for European

football pools. Journal of the Royal Statistical Society: Series D (The Statistician), 32(3):319–

329.⏎

Stone, M. (1977). ‘An asymptotic equivalence of choice of model by cross-validation and Akaike's

criterion’. Journal of the Royal Statistical Society B, 39:44–47.⏎

Štrumbelj, E. (2014). On determining probability forecasts from betting odds. International Journal

of Forecasting, 30(4):934–943.⏎

Szymanski, S. (2003). The economic design of sporting contests. Journal of Economic Literature,

41(4):1137–1187.⏎

Thomas, A. C. (2007). Inter-arrival times of goals in ice hockey. Journal of Quantitative Analysis in

Sports, 3(3).⏎

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society Series B: Statistical Methodology, 58(1):267–288.⏎

Tierney, L. and Kadane, J. (1986). ‘Accurate approximations for posterior moments and marginal

densities’. Journal of the American Statistical Association, 81:82–86.⏎

Tierney, L., Kass, R., and Kadane, J. (1989). ‘Fully exponential Laplace approximations to

expectations and variances of nonpositive functions’. Journal of the American Statistical

Association, 84:710–716.⏎

Titman, A., Costain, D., Ridall, P., and Gregory, K. (2015). Joint modelling of goals and bookings in

association football. Journal of the Royal Statistical Society Series A: Statistics in Society,

178(3):659–683.⏎

Train, K. E. (2009). Discrete Choice Methods with Simulation. Cambridge university press.⏎

Trombley, M. J. (2016). Does artificial grass affect the competitive balance in major league soccer?

Journal of Sports Analytics, 2(2):73–87.⏎

Tsokos, A., Narayanan, S., Kosmidis, I., Baio, G., Cucuringu, M., Whitaker, G., and Király, F.

(2019a). Modeling outcomes of soccer matches. Machine Learning, 108:77–95.⏎



Tzai, L., Ntzoufras, I., Vassalos, V., and Dimitriou, S. (2021). Predictions of European Basketball

Match Results with Machine Learning Algorithms. Research Preprint, Athens University of

Economics and Business.⏎

Ulmer, B., Fernandez, M., and Peterson, M. (2013). Predicting soccer match results in the english

premier league. Doctoral dissertation, Doctoral dissertation, Ph.D. dissertation, Stanford.⏎

Van Eetvelde, H., Hvattum, L., and Ley, C. (2021). The Probabilistic Final Standing Calculator: a fair

stochastic tool to handle abruptly stopped football seasons. AStA Advances in Statistical Analysis;

https://doi.org/10.1007/s10182-021-00416-6.⏎

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-

out cross-validation and waic. Statistics and Computing, 27(5):1413–1432.⏎

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2015). Pareto smoothed importance

sampling. arXiv preprint arXiv:1507.02646.⏎

Volf, P. (2009). A random point process model for the score in sport matches. IMA Journal of

Management Mathematics, 20(2):121–131.⏎

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of

observations is large. Transactions of the American Mathematical Society, 54:426–482.⏎

Walhin, J. F. (2001). Bivariate zip models. Biometrical Journal, 43(2):147–160.⏎

Warrick, A. W. (1974). Time-dependent linearized infiltration. i. point sources. Soil Science Society

of America Journal, 38(3):383–386.⏎

Watanabe, S. and Opper, M. (2010). Asymptotic equivalence of bayes cross validation and widely

applicable information criterion in singular learning theory. Journal of Machine Learning

Research, 11(12).⏎

Wheatcroft, E. (2021). Evaluating probabilistic forecasts of football matches: the case against the

ranked probability score. Journal of Quantitative Analysis in Sports, 17(4):273–287.⏎

Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite

hypotheses. Annals of Mathematical Statistics, 9:60–62.⏎

Winkler, R. L. (1969). Scoring rules and the evaluation of probability assessors. Journal of the

American Statistical Association, 64(327):1073–1078.⏎

https://doi.org/10.1007/s10182-021-00416-6


Yang, R. and Berger, J. (1996). A Catalog of Noninformative Priors. Technical Report. Institute of

Statistics and Decision Sciences, Duke University, Durham, NC.⏎

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior

distributions. Bayesian Inference and Decision Techniques.⏎

Zhang, P. (1997). Comment on ‘an asymptotically theory for linear model selection’. Statistica

Sinica, 7:254–258.⏎

Zou, H., Zeng, D., Xiao, L., and Luo, S. (2023). Bayesian inference and dynamic prediction for

multivariate longitudinal and survival data. The Annals of Applied Statistics, 17(3):2574–2595.⏎



Index

Algorithm, 3, 4, 9, 37, 38, 43–49, 78, 82–90, 96–98, 105, 117, 118, 122,
126, 133, 141, 161, 195, 199, 202, 203

analytics, 25

betting, 1–3, 5, 13, 16, 23, 24, 207, 208, 210–216, 218–228

bookmakers, 20, 24, 206–209

football analytics, 4, 25, 59, 60, 63, 78, 127, 175, 176

model, 1, 4, 6–17, 19–23, 25–36, 38–40, 43, 49–54, 56–65, 67–76, 78, 79,
81–95, 97–99, 101, 102, 107, 109, 111, 113, 117–122, 124–131,
133, 135–138, 140, 141, 145, 148–150, 152–154, 156–158, 160–
166, 168–173, 175, 177, 178, 180–190, 194–196, 199, 203, 204,
206–211, 213, 219–222, 224, 225

prediction, 1, 5, 6, 12, 14, 16–18, 20, 22, 23, 54, 58, 59, 63–65, 70, 74–78,
81, 83, 84, 93–105, 107–112, 118, 129, 145–148, 151–153, 158,
159, 177, 178, 184, 199–205, 208–210


	Cover Page
	Half-Title Page
	Series Page
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	About the Authors
	1 A short introduction to football analytics
	1.1 Introduction
	1.2 The early years of statistical analysis of football data
	1.3 Modelling approaches
	1.4 Modelling the outcome
	1.5 ELO type ranking
	1.6 Modelling the score: Issues to consider
	1.6.1 Poisson or not Poisson
	1.6.2 Correlated outcomes or not?
	1.6.3 Which covariates to use?
	1.6.4 Temporal correlation or constant across time?

	1.7 Models, models, models …
	1.7.1 Basic models for the number of goals
	1.7.2 Dynamic models
	1.7.3 Models for the goal-difference
	1.7.4 In-play models
	1.7.5 Survival analysis models
	1.7.6 More information about predictive models

	1.8 Other modelling aspects
	1.8.1 The home advantage
	1.8.2 Card modelling and the red card effect
	1.8.3 The contribution of the video assisted referee (VAR)
	1.8.4 The use of tracking data
	1.8.5 Planning the optimal time for substitutions
	1.8.6 Competitive balance: A key factor in fan engagement
	1.8.7 Concluding thoughts and discussion

	1.9 Organization of the book

	2 Methods, algorithms and computational tools
	2.1 Model formulation
	2.1.1 The double Poisson model
	2.1.2 The vanilla model structure
	2.1.3 Additional features for prediction or interpretation of the game
	2.1.4 Performance features vs team abilities
	2.1.5 Models for international and European club tournaments

	2.2 How to setup the data
	2.2.1 Game-arranged data
	2.2.2 Univariate-arranged data
	2.2.3 Model formulation for univariate-arranged data

	2.3 Methods of estimation Part I: The classical approach and the maximum likelihood estimation
	2.3.1 The likelihood function
	2.3.2 Maximizing the likelihood

	2.4 Illustration: Fitting the double Poisson model with MLE approach
	2.5 Methods of estimation Part II: A short introduction to model-based Bayesian inference
	2.5.1 Markov Chain Monte Carlo methods
	2.5.2 Tools for fitting Bayesian models

	2.6 Illustration (continued): Fitting the double Poisson model with the Bayesian approach
	2.6.1 Results
	2.6.2 Prediction of future games.

	2.7 Tools for fitting football models in R
	2.8 Basic model assumptions and model checking issues
	2.8.1 Dependence in the number of goals
	2.8.2 Over-dispersion
	2.8.3 Excess of draws
	2.8.4 Dynamic abilities

	2.9 How to compare and select models: Criteria, assumptions
	2.9.1 Goodness of fit and significance tests
	2.9.2 Model comparison using information criteria
	2.9.3 Bayesian predictive measures
	2.9.4 Bayesian model comparison and variable selection
	2.9.5 Training and testing our model
	2.9.6 Out-of-sample prediction
	2.9.7 Prediction evaluation metrics

	2.10 Summary and closing remarks of Chapter 2

	3 Tournament and game prediction via simulation
	3.1 Game score and outcome prediction
	3.1.1 Final score prediction using point estimates
	3.1.2 Plug-in Monte Carlo method
	3.1.3 Prediction using Bootstrap
	3.1.4 Bayesian prediction via MCMC

	3.2 Game outcome prediction from outcome-based models
	3.3 Tournament regeneration and prediction
	3.3.1 League regeneration and prediction
	3.3.2 Calculating expected points and other league metrics
	3.3.3 League prediction scenarios
	3.3.4 Hybrid tournaments

	3.4 Measures of goodness of fit and predictive performance
	3.4.1 Root mean absolute error and mean absolute error
	3.4.2 Coefficient of determination
	3.4.3 Brier score
	3.4.4 Ranked probability score
	3.4.5 Average of correct probability
	3.4.6 Pseudo-R2
	3.4.7 Measures for assessing predictive performance for binary outcomes
	3.4.8 Cohen's Kappa for measuring agreement

	3.5 Summary and closing remarks of Chapter 3

	4 Implementation of basic models in R via footBayes
	4.1 The installation of the footBayes package
	4.2 Available models
	4.3 Basic syntax and functions
	4.4 Basic models in footBayes
	4.4.1 Double Poisson
	4.4.2 Bivariate Poisson
	4.4.3 Dynamic models
	4.4.4 Weighting function in the likelihood

	4.5 Case-study: Italian Serie A 2009/2010
	4.5.1 Static models
	4.5.2 Dynamic models
	4.5.3 Changing default prior distributions
	4.5.4 Predictions and predictive accuracy
	4.5.5 Rank-league reconstruction
	4.5.6 Model checking
	4.5.7 Model comparison with the loo package

	4.6 Summary and closing remarks of Chapter 4

	5 Additional statistical models for the scores
	5.1 Other models available in footBayes
	5.1.1 Diagonal-inflated bivariate Poisson
	5.1.2 Skellam
	5.1.3 Zero-Inflated Skellam
	5.1.4 Student-t model

	5.2 Model comparison between goal-difference models
	5.3 Adding covariates
	5.4 Additional models
	5.4.1 Scaled double Poisson from Dixon_Coles_1997
	5.4.2 The count Weibull model
	5.4.3 The Copula model

	5.5 Summary and closing remarks of Chapter 5

	6 Modelling international matches: The Euro and World Cups experience
	6.1 Data and modelling a knock-out tournament
	6.2 Euro Cup 2020 and World Cup 2022
	6.2.1 Data
	6.2.2 Tournaments scheme
	6.2.3 The rankings
	6.2.4 The DIBP model
	6.2.5 Ability estimation
	6.2.6 Ahead probabilistic predictions
	6.2.7 Winning probabilities
	6.2.8 Expected goals
	6.2.9 What happened, what we predicted

	6.3 Comparison with odds forecasters
	6.4 Future research
	6.5 Summary and closing remarks of Chapter 6

	7 Compare statistical models' performance with the bookmakers
	7.1 How odds relate to probabilities
	7.1.1 Basic normalization
	7.1.2 Shin's procedure
	7.1.3 Regression analysis

	7.2 The bookmaker market: Expected profit, fairness, and margin
	7.2.1 Market with one bookmaker and one event
	7.2.2 Market with one bookmaker and more events
	7.2.3 Market with more bookmakers and more events
	7.2.4 Bookmaker's gain in football

	7.3 Strategies on betting in football
	7.3.1 Dixon and Coles approach
	7.3.2 Highest expected return
	7.3.3 Kelly approach
	7.3.4 Expected profit optimization

	7.4 Case Study: Italian Serie A 2009–2010
	7.5 Summary and closing remarks of Chapter 7

	Bibliography
	Index

